Cargando…
Deep sr-DDL: Deep structurally regularized dynamic dictionary learning to integrate multimodal and dynamic functional connectomics data for multidimensional clinical characterizations
We propose a novel integrated framework that jointly models complementary information from resting-state functional MRI (rs-fMRI) connectivity and diffusion tensor imaging (DTI) tractography to extract biomarkers of brain connectivity predictive of behavior. Our framework couples a generative model...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528511/ https://www.ncbi.nlm.nih.gov/pubmed/34271159 http://dx.doi.org/10.1016/j.neuroimage.2021.118388 |
_version_ | 1784586263888658432 |
---|---|
author | D’Souza, N.S. Nebel, M.B. Crocetti, D. Robinson, J. Wymbs, N. Mostofsky, S.H. Venkataraman, A. |
author_facet | D’Souza, N.S. Nebel, M.B. Crocetti, D. Robinson, J. Wymbs, N. Mostofsky, S.H. Venkataraman, A. |
author_sort | D’Souza, N.S. |
collection | PubMed |
description | We propose a novel integrated framework that jointly models complementary information from resting-state functional MRI (rs-fMRI) connectivity and diffusion tensor imaging (DTI) tractography to extract biomarkers of brain connectivity predictive of behavior. Our framework couples a generative model of the connectomics data with a deep network that predicts behavioral scores. The generative component is a structurally-regularized Dynamic Dictionary Learning (sr-DDL) model that decomposes the dynamic rs-fMRI correlation matrices into a collection of shared basis networks and time varying subject-specific loadings. We use the DTI tractography to regularize this matrix factorization and learn anatomically informed functional connectivity profiles. The deep component of our framework is an LSTM-ANN block, which uses the temporal evolution of the subject-specific sr-DDL loadings to predict multidimensional clinical characterizations. Our joint optimization strategy collectively estimates the basis networks, the subject-specific time-varying loadings, and the neural network weights. We validate our framework on a dataset of neurotypical individuals from the Human Connectome Project (HCP) database to map to cognition and on a separate multi-score prediction task on individuals diagnosed with Autism Spectrum Disorder (ASD) in a five-fold cross validation setting. Our hybrid model outperforms several state-of-the-art approaches at clinical outcome prediction and learns interpretable multimodal neural signatures of brain organization. |
format | Online Article Text |
id | pubmed-8528511 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-85285112021-11-01 Deep sr-DDL: Deep structurally regularized dynamic dictionary learning to integrate multimodal and dynamic functional connectomics data for multidimensional clinical characterizations D’Souza, N.S. Nebel, M.B. Crocetti, D. Robinson, J. Wymbs, N. Mostofsky, S.H. Venkataraman, A. Neuroimage Article We propose a novel integrated framework that jointly models complementary information from resting-state functional MRI (rs-fMRI) connectivity and diffusion tensor imaging (DTI) tractography to extract biomarkers of brain connectivity predictive of behavior. Our framework couples a generative model of the connectomics data with a deep network that predicts behavioral scores. The generative component is a structurally-regularized Dynamic Dictionary Learning (sr-DDL) model that decomposes the dynamic rs-fMRI correlation matrices into a collection of shared basis networks and time varying subject-specific loadings. We use the DTI tractography to regularize this matrix factorization and learn anatomically informed functional connectivity profiles. The deep component of our framework is an LSTM-ANN block, which uses the temporal evolution of the subject-specific sr-DDL loadings to predict multidimensional clinical characterizations. Our joint optimization strategy collectively estimates the basis networks, the subject-specific time-varying loadings, and the neural network weights. We validate our framework on a dataset of neurotypical individuals from the Human Connectome Project (HCP) database to map to cognition and on a separate multi-score prediction task on individuals diagnosed with Autism Spectrum Disorder (ASD) in a five-fold cross validation setting. Our hybrid model outperforms several state-of-the-art approaches at clinical outcome prediction and learns interpretable multimodal neural signatures of brain organization. 2021-07-14 2021-11-01 /pmc/articles/PMC8528511/ /pubmed/34271159 http://dx.doi.org/10.1016/j.neuroimage.2021.118388 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ) |
spellingShingle | Article D’Souza, N.S. Nebel, M.B. Crocetti, D. Robinson, J. Wymbs, N. Mostofsky, S.H. Venkataraman, A. Deep sr-DDL: Deep structurally regularized dynamic dictionary learning to integrate multimodal and dynamic functional connectomics data for multidimensional clinical characterizations |
title | Deep sr-DDL: Deep structurally regularized dynamic dictionary learning to integrate multimodal and dynamic functional connectomics data for multidimensional clinical characterizations |
title_full | Deep sr-DDL: Deep structurally regularized dynamic dictionary learning to integrate multimodal and dynamic functional connectomics data for multidimensional clinical characterizations |
title_fullStr | Deep sr-DDL: Deep structurally regularized dynamic dictionary learning to integrate multimodal and dynamic functional connectomics data for multidimensional clinical characterizations |
title_full_unstemmed | Deep sr-DDL: Deep structurally regularized dynamic dictionary learning to integrate multimodal and dynamic functional connectomics data for multidimensional clinical characterizations |
title_short | Deep sr-DDL: Deep structurally regularized dynamic dictionary learning to integrate multimodal and dynamic functional connectomics data for multidimensional clinical characterizations |
title_sort | deep sr-ddl: deep structurally regularized dynamic dictionary learning to integrate multimodal and dynamic functional connectomics data for multidimensional clinical characterizations |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528511/ https://www.ncbi.nlm.nih.gov/pubmed/34271159 http://dx.doi.org/10.1016/j.neuroimage.2021.118388 |
work_keys_str_mv | AT dsouzans deepsrddldeepstructurallyregularizeddynamicdictionarylearningtointegratemultimodalanddynamicfunctionalconnectomicsdataformultidimensionalclinicalcharacterizations AT nebelmb deepsrddldeepstructurallyregularizeddynamicdictionarylearningtointegratemultimodalanddynamicfunctionalconnectomicsdataformultidimensionalclinicalcharacterizations AT crocettid deepsrddldeepstructurallyregularizeddynamicdictionarylearningtointegratemultimodalanddynamicfunctionalconnectomicsdataformultidimensionalclinicalcharacterizations AT robinsonj deepsrddldeepstructurallyregularizeddynamicdictionarylearningtointegratemultimodalanddynamicfunctionalconnectomicsdataformultidimensionalclinicalcharacterizations AT wymbsn deepsrddldeepstructurallyregularizeddynamicdictionarylearningtointegratemultimodalanddynamicfunctionalconnectomicsdataformultidimensionalclinicalcharacterizations AT mostofskysh deepsrddldeepstructurallyregularizeddynamicdictionarylearningtointegratemultimodalanddynamicfunctionalconnectomicsdataformultidimensionalclinicalcharacterizations AT venkataramana deepsrddldeepstructurallyregularizeddynamicdictionarylearningtointegratemultimodalanddynamicfunctionalconnectomicsdataformultidimensionalclinicalcharacterizations |