Cargando…

Deep sr-DDL: Deep structurally regularized dynamic dictionary learning to integrate multimodal and dynamic functional connectomics data for multidimensional clinical characterizations

We propose a novel integrated framework that jointly models complementary information from resting-state functional MRI (rs-fMRI) connectivity and diffusion tensor imaging (DTI) tractography to extract biomarkers of brain connectivity predictive of behavior. Our framework couples a generative model...

Descripción completa

Detalles Bibliográficos
Autores principales: D’Souza, N.S., Nebel, M.B., Crocetti, D., Robinson, J., Wymbs, N., Mostofsky, S.H., Venkataraman, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528511/
https://www.ncbi.nlm.nih.gov/pubmed/34271159
http://dx.doi.org/10.1016/j.neuroimage.2021.118388
_version_ 1784586263888658432
author D’Souza, N.S.
Nebel, M.B.
Crocetti, D.
Robinson, J.
Wymbs, N.
Mostofsky, S.H.
Venkataraman, A.
author_facet D’Souza, N.S.
Nebel, M.B.
Crocetti, D.
Robinson, J.
Wymbs, N.
Mostofsky, S.H.
Venkataraman, A.
author_sort D’Souza, N.S.
collection PubMed
description We propose a novel integrated framework that jointly models complementary information from resting-state functional MRI (rs-fMRI) connectivity and diffusion tensor imaging (DTI) tractography to extract biomarkers of brain connectivity predictive of behavior. Our framework couples a generative model of the connectomics data with a deep network that predicts behavioral scores. The generative component is a structurally-regularized Dynamic Dictionary Learning (sr-DDL) model that decomposes the dynamic rs-fMRI correlation matrices into a collection of shared basis networks and time varying subject-specific loadings. We use the DTI tractography to regularize this matrix factorization and learn anatomically informed functional connectivity profiles. The deep component of our framework is an LSTM-ANN block, which uses the temporal evolution of the subject-specific sr-DDL loadings to predict multidimensional clinical characterizations. Our joint optimization strategy collectively estimates the basis networks, the subject-specific time-varying loadings, and the neural network weights. We validate our framework on a dataset of neurotypical individuals from the Human Connectome Project (HCP) database to map to cognition and on a separate multi-score prediction task on individuals diagnosed with Autism Spectrum Disorder (ASD) in a five-fold cross validation setting. Our hybrid model outperforms several state-of-the-art approaches at clinical outcome prediction and learns interpretable multimodal neural signatures of brain organization.
format Online
Article
Text
id pubmed-8528511
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-85285112021-11-01 Deep sr-DDL: Deep structurally regularized dynamic dictionary learning to integrate multimodal and dynamic functional connectomics data for multidimensional clinical characterizations D’Souza, N.S. Nebel, M.B. Crocetti, D. Robinson, J. Wymbs, N. Mostofsky, S.H. Venkataraman, A. Neuroimage Article We propose a novel integrated framework that jointly models complementary information from resting-state functional MRI (rs-fMRI) connectivity and diffusion tensor imaging (DTI) tractography to extract biomarkers of brain connectivity predictive of behavior. Our framework couples a generative model of the connectomics data with a deep network that predicts behavioral scores. The generative component is a structurally-regularized Dynamic Dictionary Learning (sr-DDL) model that decomposes the dynamic rs-fMRI correlation matrices into a collection of shared basis networks and time varying subject-specific loadings. We use the DTI tractography to regularize this matrix factorization and learn anatomically informed functional connectivity profiles. The deep component of our framework is an LSTM-ANN block, which uses the temporal evolution of the subject-specific sr-DDL loadings to predict multidimensional clinical characterizations. Our joint optimization strategy collectively estimates the basis networks, the subject-specific time-varying loadings, and the neural network weights. We validate our framework on a dataset of neurotypical individuals from the Human Connectome Project (HCP) database to map to cognition and on a separate multi-score prediction task on individuals diagnosed with Autism Spectrum Disorder (ASD) in a five-fold cross validation setting. Our hybrid model outperforms several state-of-the-art approaches at clinical outcome prediction and learns interpretable multimodal neural signatures of brain organization. 2021-07-14 2021-11-01 /pmc/articles/PMC8528511/ /pubmed/34271159 http://dx.doi.org/10.1016/j.neuroimage.2021.118388 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) )
spellingShingle Article
D’Souza, N.S.
Nebel, M.B.
Crocetti, D.
Robinson, J.
Wymbs, N.
Mostofsky, S.H.
Venkataraman, A.
Deep sr-DDL: Deep structurally regularized dynamic dictionary learning to integrate multimodal and dynamic functional connectomics data for multidimensional clinical characterizations
title Deep sr-DDL: Deep structurally regularized dynamic dictionary learning to integrate multimodal and dynamic functional connectomics data for multidimensional clinical characterizations
title_full Deep sr-DDL: Deep structurally regularized dynamic dictionary learning to integrate multimodal and dynamic functional connectomics data for multidimensional clinical characterizations
title_fullStr Deep sr-DDL: Deep structurally regularized dynamic dictionary learning to integrate multimodal and dynamic functional connectomics data for multidimensional clinical characterizations
title_full_unstemmed Deep sr-DDL: Deep structurally regularized dynamic dictionary learning to integrate multimodal and dynamic functional connectomics data for multidimensional clinical characterizations
title_short Deep sr-DDL: Deep structurally regularized dynamic dictionary learning to integrate multimodal and dynamic functional connectomics data for multidimensional clinical characterizations
title_sort deep sr-ddl: deep structurally regularized dynamic dictionary learning to integrate multimodal and dynamic functional connectomics data for multidimensional clinical characterizations
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528511/
https://www.ncbi.nlm.nih.gov/pubmed/34271159
http://dx.doi.org/10.1016/j.neuroimage.2021.118388
work_keys_str_mv AT dsouzans deepsrddldeepstructurallyregularizeddynamicdictionarylearningtointegratemultimodalanddynamicfunctionalconnectomicsdataformultidimensionalclinicalcharacterizations
AT nebelmb deepsrddldeepstructurallyregularizeddynamicdictionarylearningtointegratemultimodalanddynamicfunctionalconnectomicsdataformultidimensionalclinicalcharacterizations
AT crocettid deepsrddldeepstructurallyregularizeddynamicdictionarylearningtointegratemultimodalanddynamicfunctionalconnectomicsdataformultidimensionalclinicalcharacterizations
AT robinsonj deepsrddldeepstructurallyregularizeddynamicdictionarylearningtointegratemultimodalanddynamicfunctionalconnectomicsdataformultidimensionalclinicalcharacterizations
AT wymbsn deepsrddldeepstructurallyregularizeddynamicdictionarylearningtointegratemultimodalanddynamicfunctionalconnectomicsdataformultidimensionalclinicalcharacterizations
AT mostofskysh deepsrddldeepstructurallyregularizeddynamicdictionarylearningtointegratemultimodalanddynamicfunctionalconnectomicsdataformultidimensionalclinicalcharacterizations
AT venkataramana deepsrddldeepstructurallyregularizeddynamicdictionarylearningtointegratemultimodalanddynamicfunctionalconnectomicsdataformultidimensionalclinicalcharacterizations