Cargando…
Spatial Prediction of COVID-19 in China Based on Machine Learning Algorithms and Geographically Weighted Regression
COVID-19 has swept through the world since December 2019 and caused a large number of patients and deaths. Spatial prediction on the spread of the epidemic is greatly important for disease control and management. In this study, we predicted the cumulative confirmed cases (CCCs) from Jan 17 to Mar 1,...
Autores principales: | Shao, Qi, Xu, Yongming, Wu, Hanyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528585/ https://www.ncbi.nlm.nih.gov/pubmed/34691241 http://dx.doi.org/10.1155/2021/7196492 |
Ejemplares similares
-
Spatial distribution of rural population using mixed geographically weighted regression: Evidence from Jiangxi Province in China
por: Zhang, Liguo, et al.
Publicado: (2021) -
Analysis of spatial characteristics and geographic weighted regression of tuberculosis prevalence in Kashgar, China
por: Chen, Xiaodie, et al.
Publicado: (2023) -
Non-Iterative Multiscale Estimation for Spatial Autoregressive Geographically Weighted Regression Models
por: Gao, Shi-Jie, et al.
Publicado: (2023) -
Modeling spatial determinates of teenage pregnancy in Ethiopia; geographically weighted regression
por: Tigabu, Seblewongel, et al.
Publicado: (2021) -
Spatial Analysis of Severe Fever with Thrombocytopenia Syndrome Virus in China Using a Geographically Weighted Logistic Regression Model
por: Wu, Liang, et al.
Publicado: (2016)