Cargando…

Role of the Emphysema Index Combined with the Chronic Obstructive Pulmonary Disease Assessment Test Score in the Evaluation of Chronic Obstructive Pulmonary Disease

BACKGROUND: This study aimed to evaluate the efficacy of the emphysema index (EI) in distinguishing chronic bronchitis (CB) from chronic obstructive pulmonary disease (COPD) and its role, combined with the COPD Assessment Test (CAT) score, in the evaluation of COPD. METHODS: A total of 92 patients w...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Qi, Wei, Xia, Li, Jie, Gao, Yan-Zhong, Xu, Shu-Di, Yu, Nan, Mi, Jiu-Yun, Mi, Bai-Bing, Guo, You-Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528610/
https://www.ncbi.nlm.nih.gov/pubmed/34691315
http://dx.doi.org/10.1155/2021/9996305
Descripción
Sumario:BACKGROUND: This study aimed to evaluate the efficacy of the emphysema index (EI) in distinguishing chronic bronchitis (CB) from chronic obstructive pulmonary disease (COPD) and its role, combined with the COPD Assessment Test (CAT) score, in the evaluation of COPD. METHODS: A total of 92 patients with CB and 277 patients with COPD were enrolled in this study. Receiver operating characteristic (ROC) curves were analyzed to evaluate whether the EI can preliminarily distinguish chronic bronchitis from COPD. Considering the heterogeneity of COPD, there might be missed diagnosis of some patients with bronchitis type when differentiating COPD patients only by EI. Therefore, patients with COPD were classified according to the CAT score and EI into four groups: Group 1 (EI < 16%, CAT < 10), Group 2 (EI < 16%, CAT ≥ 10), Group 3 (EI ≥ 16%, CAT < 10), and Group 4 (EI ≥ 16%, CAT ≥ 10). The records of pulmonary function and quantitative computed tomography findings were retrospectively analyzed. RESULTS: ROC curve analysis showed that EI = 16.2% was the cutoff value for distinguishing COPD from CB. Groups 1 and 2 exhibited significantly higher maximal voluntary ventilation (MVV) percent predicted (pred), forced expiratory volume in 1 second (FEV1)/forced vital capacity (FVC), maximal midexpiratory flow of 25–75% pred, carbon monoxide-diffusing capacity (DLCO)/alveolar ventilation (VA), FEV1 % pred (p ≤ 0.013), and maximal expiratory flow 50% pred (all p < 0.05) than Group 4. FEV1/FVC and DLCO/VA were significantly lower in Group 3 than in Group 2 (p=0.002 and p < 0.001, respectively). The residual volume/total lung capacity was higher in Group 3 than in Groups 1 and 2 (p < 0.05). CONCLUSIONS: The combination of EI and CAT was effective in the evaluation of COPD.