Cargando…
Session Recommendation Model Based on Context-Aware and Gated Graph Neural Networks
The graph neural network (GNN) based approach has been successfully applied to session-based recommendation tasks. However, in the face of complex and changing real-world situations, the existing session recommendation algorithms do not fully consider the context information in user decision-making;...
Autores principales: | Li, Dan, Gao, Qian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528620/ https://www.ncbi.nlm.nih.gov/pubmed/34691172 http://dx.doi.org/10.1155/2021/7266960 |
Ejemplares similares
-
Graph Neural Network and Context-Aware Based User Behavior Prediction and Recommendation System Research
por: Gao, Qian, et al.
Publicado: (2020) -
Self-supervised global context graph neural network for session-based recommendation
por: Chu, Fei, et al.
Publicado: (2022) -
Personal Interest Attention Graph Neural Networks for Session-Based Recommendation
por: Zhang, Xiangde, et al.
Publicado: (2021) -
A graph neural network framework based on preference-aware graph diffusion for recommendation
por: Shu, Tao, et al.
Publicado: (2022) -
Dynamic and Static Features-Aware Recommendation with Graph Neural Networks
por: Sun, Ninghua, et al.
Publicado: (2022)