Cargando…

Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data

Deconvolution of bulk gene expression profiles into the cellular components is pivotal to portraying tissue’s complex cellular make-up, such as the tumor microenvironment. However, the inherently variable nature of gene expression requires a comprehensive statistical model and reliable prior knowled...

Descripción completa

Detalles Bibliográficos
Autores principales: Andrade Barbosa, Bárbara, van Asten, Saskia D., Oh, Ji Won, Farina-Sarasqueta, Arantza, Verheij, Joanne, Dijk, Frederike, van Laarhoven, Hanneke W. M., Ylstra, Bauke, Garcia Vallejo, Juan J., van de Wiel, Mark A., Kim, Yongsoo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528834/
https://www.ncbi.nlm.nih.gov/pubmed/34671028
http://dx.doi.org/10.1038/s41467-021-26328-2
_version_ 1784586335034540032
author Andrade Barbosa, Bárbara
van Asten, Saskia D.
Oh, Ji Won
Farina-Sarasqueta, Arantza
Verheij, Joanne
Dijk, Frederike
van Laarhoven, Hanneke W. M.
Ylstra, Bauke
Garcia Vallejo, Juan J.
van de Wiel, Mark A.
Kim, Yongsoo
author_facet Andrade Barbosa, Bárbara
van Asten, Saskia D.
Oh, Ji Won
Farina-Sarasqueta, Arantza
Verheij, Joanne
Dijk, Frederike
van Laarhoven, Hanneke W. M.
Ylstra, Bauke
Garcia Vallejo, Juan J.
van de Wiel, Mark A.
Kim, Yongsoo
author_sort Andrade Barbosa, Bárbara
collection PubMed
description Deconvolution of bulk gene expression profiles into the cellular components is pivotal to portraying tissue’s complex cellular make-up, such as the tumor microenvironment. However, the inherently variable nature of gene expression requires a comprehensive statistical model and reliable prior knowledge of individual cell types that can be obtained from single-cell RNA sequencing. We introduce BLADE (Bayesian Log-normAl Deconvolution), a unified Bayesian framework to estimate both cellular composition and gene expression profiles for each cell type. Unlike previous comprehensive statistical approaches, BLADE can handle > 20 types of cells due to the efficient variational inference. Throughout an intensive evaluation with > 700 simulated and real datasets, BLADE demonstrated enhanced robustness against gene expression variability and better completeness than conventional methods, in particular, to reconstruct gene expression profiles of each cell type. In summary, BLADE is a powerful tool to unravel heterogeneous cellular activity in complex biological systems from standard bulk gene expression data.
format Online
Article
Text
id pubmed-8528834
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-85288342021-10-22 Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data Andrade Barbosa, Bárbara van Asten, Saskia D. Oh, Ji Won Farina-Sarasqueta, Arantza Verheij, Joanne Dijk, Frederike van Laarhoven, Hanneke W. M. Ylstra, Bauke Garcia Vallejo, Juan J. van de Wiel, Mark A. Kim, Yongsoo Nat Commun Article Deconvolution of bulk gene expression profiles into the cellular components is pivotal to portraying tissue’s complex cellular make-up, such as the tumor microenvironment. However, the inherently variable nature of gene expression requires a comprehensive statistical model and reliable prior knowledge of individual cell types that can be obtained from single-cell RNA sequencing. We introduce BLADE (Bayesian Log-normAl Deconvolution), a unified Bayesian framework to estimate both cellular composition and gene expression profiles for each cell type. Unlike previous comprehensive statistical approaches, BLADE can handle > 20 types of cells due to the efficient variational inference. Throughout an intensive evaluation with > 700 simulated and real datasets, BLADE demonstrated enhanced robustness against gene expression variability and better completeness than conventional methods, in particular, to reconstruct gene expression profiles of each cell type. In summary, BLADE is a powerful tool to unravel heterogeneous cellular activity in complex biological systems from standard bulk gene expression data. Nature Publishing Group UK 2021-10-20 /pmc/articles/PMC8528834/ /pubmed/34671028 http://dx.doi.org/10.1038/s41467-021-26328-2 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Andrade Barbosa, Bárbara
van Asten, Saskia D.
Oh, Ji Won
Farina-Sarasqueta, Arantza
Verheij, Joanne
Dijk, Frederike
van Laarhoven, Hanneke W. M.
Ylstra, Bauke
Garcia Vallejo, Juan J.
van de Wiel, Mark A.
Kim, Yongsoo
Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data
title Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data
title_full Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data
title_fullStr Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data
title_full_unstemmed Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data
title_short Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data
title_sort bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528834/
https://www.ncbi.nlm.nih.gov/pubmed/34671028
http://dx.doi.org/10.1038/s41467-021-26328-2
work_keys_str_mv AT andradebarbosabarbara bayesianlognormaldeconvolutionforenhancedinsilicomicrodissectionofbulkgeneexpressiondata
AT vanastensaskiad bayesianlognormaldeconvolutionforenhancedinsilicomicrodissectionofbulkgeneexpressiondata
AT ohjiwon bayesianlognormaldeconvolutionforenhancedinsilicomicrodissectionofbulkgeneexpressiondata
AT farinasarasquetaarantza bayesianlognormaldeconvolutionforenhancedinsilicomicrodissectionofbulkgeneexpressiondata
AT verheijjoanne bayesianlognormaldeconvolutionforenhancedinsilicomicrodissectionofbulkgeneexpressiondata
AT dijkfrederike bayesianlognormaldeconvolutionforenhancedinsilicomicrodissectionofbulkgeneexpressiondata
AT vanlaarhovenhannekewm bayesianlognormaldeconvolutionforenhancedinsilicomicrodissectionofbulkgeneexpressiondata
AT ylstrabauke bayesianlognormaldeconvolutionforenhancedinsilicomicrodissectionofbulkgeneexpressiondata
AT garciavallejojuanj bayesianlognormaldeconvolutionforenhancedinsilicomicrodissectionofbulkgeneexpressiondata
AT vandewielmarka bayesianlognormaldeconvolutionforenhancedinsilicomicrodissectionofbulkgeneexpressiondata
AT kimyongsoo bayesianlognormaldeconvolutionforenhancedinsilicomicrodissectionofbulkgeneexpressiondata