Cargando…
Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data
Deconvolution of bulk gene expression profiles into the cellular components is pivotal to portraying tissue’s complex cellular make-up, such as the tumor microenvironment. However, the inherently variable nature of gene expression requires a comprehensive statistical model and reliable prior knowled...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528834/ https://www.ncbi.nlm.nih.gov/pubmed/34671028 http://dx.doi.org/10.1038/s41467-021-26328-2 |
_version_ | 1784586335034540032 |
---|---|
author | Andrade Barbosa, Bárbara van Asten, Saskia D. Oh, Ji Won Farina-Sarasqueta, Arantza Verheij, Joanne Dijk, Frederike van Laarhoven, Hanneke W. M. Ylstra, Bauke Garcia Vallejo, Juan J. van de Wiel, Mark A. Kim, Yongsoo |
author_facet | Andrade Barbosa, Bárbara van Asten, Saskia D. Oh, Ji Won Farina-Sarasqueta, Arantza Verheij, Joanne Dijk, Frederike van Laarhoven, Hanneke W. M. Ylstra, Bauke Garcia Vallejo, Juan J. van de Wiel, Mark A. Kim, Yongsoo |
author_sort | Andrade Barbosa, Bárbara |
collection | PubMed |
description | Deconvolution of bulk gene expression profiles into the cellular components is pivotal to portraying tissue’s complex cellular make-up, such as the tumor microenvironment. However, the inherently variable nature of gene expression requires a comprehensive statistical model and reliable prior knowledge of individual cell types that can be obtained from single-cell RNA sequencing. We introduce BLADE (Bayesian Log-normAl Deconvolution), a unified Bayesian framework to estimate both cellular composition and gene expression profiles for each cell type. Unlike previous comprehensive statistical approaches, BLADE can handle > 20 types of cells due to the efficient variational inference. Throughout an intensive evaluation with > 700 simulated and real datasets, BLADE demonstrated enhanced robustness against gene expression variability and better completeness than conventional methods, in particular, to reconstruct gene expression profiles of each cell type. In summary, BLADE is a powerful tool to unravel heterogeneous cellular activity in complex biological systems from standard bulk gene expression data. |
format | Online Article Text |
id | pubmed-8528834 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-85288342021-10-22 Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data Andrade Barbosa, Bárbara van Asten, Saskia D. Oh, Ji Won Farina-Sarasqueta, Arantza Verheij, Joanne Dijk, Frederike van Laarhoven, Hanneke W. M. Ylstra, Bauke Garcia Vallejo, Juan J. van de Wiel, Mark A. Kim, Yongsoo Nat Commun Article Deconvolution of bulk gene expression profiles into the cellular components is pivotal to portraying tissue’s complex cellular make-up, such as the tumor microenvironment. However, the inherently variable nature of gene expression requires a comprehensive statistical model and reliable prior knowledge of individual cell types that can be obtained from single-cell RNA sequencing. We introduce BLADE (Bayesian Log-normAl Deconvolution), a unified Bayesian framework to estimate both cellular composition and gene expression profiles for each cell type. Unlike previous comprehensive statistical approaches, BLADE can handle > 20 types of cells due to the efficient variational inference. Throughout an intensive evaluation with > 700 simulated and real datasets, BLADE demonstrated enhanced robustness against gene expression variability and better completeness than conventional methods, in particular, to reconstruct gene expression profiles of each cell type. In summary, BLADE is a powerful tool to unravel heterogeneous cellular activity in complex biological systems from standard bulk gene expression data. Nature Publishing Group UK 2021-10-20 /pmc/articles/PMC8528834/ /pubmed/34671028 http://dx.doi.org/10.1038/s41467-021-26328-2 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Andrade Barbosa, Bárbara van Asten, Saskia D. Oh, Ji Won Farina-Sarasqueta, Arantza Verheij, Joanne Dijk, Frederike van Laarhoven, Hanneke W. M. Ylstra, Bauke Garcia Vallejo, Juan J. van de Wiel, Mark A. Kim, Yongsoo Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data |
title | Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data |
title_full | Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data |
title_fullStr | Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data |
title_full_unstemmed | Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data |
title_short | Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data |
title_sort | bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528834/ https://www.ncbi.nlm.nih.gov/pubmed/34671028 http://dx.doi.org/10.1038/s41467-021-26328-2 |
work_keys_str_mv | AT andradebarbosabarbara bayesianlognormaldeconvolutionforenhancedinsilicomicrodissectionofbulkgeneexpressiondata AT vanastensaskiad bayesianlognormaldeconvolutionforenhancedinsilicomicrodissectionofbulkgeneexpressiondata AT ohjiwon bayesianlognormaldeconvolutionforenhancedinsilicomicrodissectionofbulkgeneexpressiondata AT farinasarasquetaarantza bayesianlognormaldeconvolutionforenhancedinsilicomicrodissectionofbulkgeneexpressiondata AT verheijjoanne bayesianlognormaldeconvolutionforenhancedinsilicomicrodissectionofbulkgeneexpressiondata AT dijkfrederike bayesianlognormaldeconvolutionforenhancedinsilicomicrodissectionofbulkgeneexpressiondata AT vanlaarhovenhannekewm bayesianlognormaldeconvolutionforenhancedinsilicomicrodissectionofbulkgeneexpressiondata AT ylstrabauke bayesianlognormaldeconvolutionforenhancedinsilicomicrodissectionofbulkgeneexpressiondata AT garciavallejojuanj bayesianlognormaldeconvolutionforenhancedinsilicomicrodissectionofbulkgeneexpressiondata AT vandewielmarka bayesianlognormaldeconvolutionforenhancedinsilicomicrodissectionofbulkgeneexpressiondata AT kimyongsoo bayesianlognormaldeconvolutionforenhancedinsilicomicrodissectionofbulkgeneexpressiondata |