Cargando…
Screening Potential Drugs for COVID-19 Based on Bound Nuclear Norm Regularization
The novel coronavirus pneumonia COVID-19 infected by SARS-CoV-2 has attracted worldwide attention. It is urgent to find effective therapeutic strategies for stopping COVID-19. In this study, a Bounded Nuclear Norm Regularization (BNNR) method is developed to predict anti-SARS-CoV-2 drug candidates....
Autores principales: | Wang, Juanjuan, Wang, Chang, Shen, Ling, Zhou, Liqian, Peng, Lihong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8529063/ https://www.ncbi.nlm.nih.gov/pubmed/34691157 http://dx.doi.org/10.3389/fgene.2021.749256 |
Ejemplares similares
-
Predict potential miRNA-disease associations based on bounded nuclear norm regularization
por: Rao, Yidong, et al.
Publicado: (2022) -
Drug repositioning based on bounded nuclear norm regularization
por: Yang, Mengyun, et al.
Publicado: (2019) -
Identifying potential microRNA biomarkers for colon cancer and colorectal cancer through bound nuclear norm regularization
por: Zhai, Shengyong, et al.
Publicado: (2022) -
Identifying Effective Antiviral Drugs Against SARS-CoV-2 by Drug Repositioning Through Virus-Drug Association Prediction
por: Peng, Lihong, et al.
Publicado: (2020) -
Editorial: Machine Learning-Based Methods for RNA Data Analysis
por: Peng, Lihong, et al.
Publicado: (2022)