Cargando…
Estimation of required sample size for external validation of risk models for binary outcomes
Risk-prediction models for health outcomes are used in practice as part of clinical decision-making, and it is essential that their performance be externally validated. An important aspect in the design of a validation study is choosing an adequate sample size. In this paper, we investigate the samp...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8529102/ https://www.ncbi.nlm.nih.gov/pubmed/33881369 http://dx.doi.org/10.1177/09622802211007522 |
_version_ | 1784586395707244544 |
---|---|
author | Pavlou, Menelaos Qu, Chen Omar, Rumana Z Seaman, Shaun R Steyerberg, Ewout W White, Ian R Ambler, Gareth |
author_facet | Pavlou, Menelaos Qu, Chen Omar, Rumana Z Seaman, Shaun R Steyerberg, Ewout W White, Ian R Ambler, Gareth |
author_sort | Pavlou, Menelaos |
collection | PubMed |
description | Risk-prediction models for health outcomes are used in practice as part of clinical decision-making, and it is essential that their performance be externally validated. An important aspect in the design of a validation study is choosing an adequate sample size. In this paper, we investigate the sample size requirements for validation studies with binary outcomes to estimate measures of predictive performance (C-statistic for discrimination and calibration slope and calibration in the large). We aim for sufficient precision in the estimated measures. In addition, we investigate the sample size to achieve sufficient power to detect a difference from a target value. Under normality assumptions on the distribution of the linear predictor, we obtain simple estimators for sample size calculations based on the measures above. Simulation studies show that the estimators perform well for common values of the C-statistic and outcome prevalence when the linear predictor is marginally Normal. Their performance deteriorates only slightly when the normality assumptions are violated. We also propose estimators which do not require normality assumptions but require specification of the marginal distribution of the linear predictor and require the use of numerical integration. These estimators were also seen to perform very well under marginal normality. Our sample size equations require a specified standard error (SE) and the anticipated C-statistic and outcome prevalence. The sample size requirement varies according to the prognostic strength of the model, outcome prevalence, choice of the performance measure and study objective. For example, to achieve an SE < 0.025 for the C-statistic, 60–170 events are required if the true C-statistic and outcome prevalence are between 0.64–0.85 and 0.05–0.3, respectively. For the calibration slope and calibration in the large, achieving SE < 0.15 [Formula: see text] would require 40–280 and 50–100 events, respectively. Our estimators may also be used for survival outcomes when the proportion of censored observations is high. |
format | Online Article Text |
id | pubmed-8529102 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-85291022021-10-22 Estimation of required sample size for external validation of risk models for binary outcomes Pavlou, Menelaos Qu, Chen Omar, Rumana Z Seaman, Shaun R Steyerberg, Ewout W White, Ian R Ambler, Gareth Stat Methods Med Res Articles Risk-prediction models for health outcomes are used in practice as part of clinical decision-making, and it is essential that their performance be externally validated. An important aspect in the design of a validation study is choosing an adequate sample size. In this paper, we investigate the sample size requirements for validation studies with binary outcomes to estimate measures of predictive performance (C-statistic for discrimination and calibration slope and calibration in the large). We aim for sufficient precision in the estimated measures. In addition, we investigate the sample size to achieve sufficient power to detect a difference from a target value. Under normality assumptions on the distribution of the linear predictor, we obtain simple estimators for sample size calculations based on the measures above. Simulation studies show that the estimators perform well for common values of the C-statistic and outcome prevalence when the linear predictor is marginally Normal. Their performance deteriorates only slightly when the normality assumptions are violated. We also propose estimators which do not require normality assumptions but require specification of the marginal distribution of the linear predictor and require the use of numerical integration. These estimators were also seen to perform very well under marginal normality. Our sample size equations require a specified standard error (SE) and the anticipated C-statistic and outcome prevalence. The sample size requirement varies according to the prognostic strength of the model, outcome prevalence, choice of the performance measure and study objective. For example, to achieve an SE < 0.025 for the C-statistic, 60–170 events are required if the true C-statistic and outcome prevalence are between 0.64–0.85 and 0.05–0.3, respectively. For the calibration slope and calibration in the large, achieving SE < 0.15 [Formula: see text] would require 40–280 and 50–100 events, respectively. Our estimators may also be used for survival outcomes when the proportion of censored observations is high. SAGE Publications 2021-04-21 2021-10 /pmc/articles/PMC8529102/ /pubmed/33881369 http://dx.doi.org/10.1177/09622802211007522 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Articles Pavlou, Menelaos Qu, Chen Omar, Rumana Z Seaman, Shaun R Steyerberg, Ewout W White, Ian R Ambler, Gareth Estimation of required sample size for external validation of risk models for binary outcomes |
title | Estimation of required sample size for external validation of risk
models for binary outcomes |
title_full | Estimation of required sample size for external validation of risk
models for binary outcomes |
title_fullStr | Estimation of required sample size for external validation of risk
models for binary outcomes |
title_full_unstemmed | Estimation of required sample size for external validation of risk
models for binary outcomes |
title_short | Estimation of required sample size for external validation of risk
models for binary outcomes |
title_sort | estimation of required sample size for external validation of risk
models for binary outcomes |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8529102/ https://www.ncbi.nlm.nih.gov/pubmed/33881369 http://dx.doi.org/10.1177/09622802211007522 |
work_keys_str_mv | AT pavloumenelaos estimationofrequiredsamplesizeforexternalvalidationofriskmodelsforbinaryoutcomes AT quchen estimationofrequiredsamplesizeforexternalvalidationofriskmodelsforbinaryoutcomes AT omarrumanaz estimationofrequiredsamplesizeforexternalvalidationofriskmodelsforbinaryoutcomes AT seamanshaunr estimationofrequiredsamplesizeforexternalvalidationofriskmodelsforbinaryoutcomes AT steyerbergewoutw estimationofrequiredsamplesizeforexternalvalidationofriskmodelsforbinaryoutcomes AT whiteianr estimationofrequiredsamplesizeforexternalvalidationofriskmodelsforbinaryoutcomes AT amblergareth estimationofrequiredsamplesizeforexternalvalidationofriskmodelsforbinaryoutcomes |