Cargando…

Wildlife pathogen detection: evaluation of alternative DNA extraction protocols

Accurate detection of wildlife pathogens is critical in wildlife disease research. False negatives or positives can have catastrophic consequences for conservation and disease-mitigation decisions. Quantitative polymerase chain reaction is commonly used for molecular detection of wildlife pathogens....

Descripción completa

Detalles Bibliográficos
Autores principales: Mantzana-Oikonomaki, Vasiliki, Maan, Martine, Sabino-Pinto, Joana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8529346/
https://www.ncbi.nlm.nih.gov/pubmed/34693021
http://dx.doi.org/10.1093/biomethods/bpab018
Descripción
Sumario:Accurate detection of wildlife pathogens is critical in wildlife disease research. False negatives or positives can have catastrophic consequences for conservation and disease-mitigation decisions. Quantitative polymerase chain reaction is commonly used for molecular detection of wildlife pathogens. The reliability of this method depends on the effective extraction of the pathogen’s DNA from host samples. A wildlife disease that has been in the centre of conservationist’s attention is the amphibian disease Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Here, we compare the efficiency of a spin column extraction kit (QIAGEN), commonly used in Bd DNA extraction, to an alternative spin column kit (BIOKÈ) used in extractions from other types of samples, which is considerably cheaper but not typically used for Bd DNA extraction. Additionally, we explore the effect of an enzymatic pre-treatment on detection efficiency. Both methods showed similar efficiency when extracting Bd DNA from zoospores from laboratory-created cell-cultures, as well as higher efficiency when combined with the enzymatic pre-treatment. Our results indicate that selecting the optimal method for DNA extraction is essential to ensure minimal false negatives and reduce project costs.