Cargando…
Therapeutic Potential for CFTR Correctors in Autosomal Recessive Polycystic Kidney Disease
BACKGROUND & AIMS: Autosomal recessive polycystic kidney disease (ARPKD) is caused by mutations in PKHD1, encoding fibrocystin/polyductin (FPC). Severe disease occurs in perinates. Those who survive the neonatal period face a myriad of comorbidities, including systemic and portal hypertension, l...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8529398/ https://www.ncbi.nlm.nih.gov/pubmed/34329764 http://dx.doi.org/10.1016/j.jcmgh.2021.07.012 |
_version_ | 1784586462275043328 |
---|---|
author | Yanda, Murali K. Tomar, Vartika Cebotaru, Liudmila |
author_facet | Yanda, Murali K. Tomar, Vartika Cebotaru, Liudmila |
author_sort | Yanda, Murali K. |
collection | PubMed |
description | BACKGROUND & AIMS: Autosomal recessive polycystic kidney disease (ARPKD) is caused by mutations in PKHD1, encoding fibrocystin/polyductin (FPC). Severe disease occurs in perinates. Those who survive the neonatal period face a myriad of comorbidities, including systemic and portal hypertension, liver fibrosis, and hepatosplenomegaly. The goal here was to uncover therapeutic strategies for ARPKD. METHODS: We used wild-type and an FPC-mutant cholangiocyte cell line in 3-dimenional cysts and in confluent monolayers to evaluate protein expression using western blotting and protein trafficking using confocal microscopy. RESULTS: We found that the protein level of the cystic fibrosis transmembrane conductance regulator (CFTR) was downregulated. The levels of heat shock proteins (HSPs) were altered in the FPC-mutant cholangiocytes, with HSP27 being downregulated and HSP90 and HSP70 upregulated. FPC-mutant cholangiocytes formed cysts, but normal cells did not. Cyst growth could be reduced by increasing HSP27 protein levels, by HSP90 and HSP70 inhibitor treatments, by silencing HSP90 through messenger RNA inhibition, or by the novel approach of treating the cysts with the CFTR corrector VX-809. In wild-type cholangiocytes, CFTR is present in both apical and basolateral membranes. FPC malfunction resulted in altered colocalization of CFTR with both apical and basolateral membranes. Whereas, treatment with VX-809, increasing HSP27 or inhibiting HSP70 or HSP90 restored CFTR localization toward normal values. CONCLUSIONS: FPC malfunction induces the formation of cysts, which are fueled by alterations in HSPs and in CFTR protein levels and miss-localization. We suggest that CFTR correctors, already in clinical use to treat cystic fibrosis, could also be used as a treatment for ARPKD. |
format | Online Article Text |
id | pubmed-8529398 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-85293982021-10-27 Therapeutic Potential for CFTR Correctors in Autosomal Recessive Polycystic Kidney Disease Yanda, Murali K. Tomar, Vartika Cebotaru, Liudmila Cell Mol Gastroenterol Hepatol Original Research BACKGROUND & AIMS: Autosomal recessive polycystic kidney disease (ARPKD) is caused by mutations in PKHD1, encoding fibrocystin/polyductin (FPC). Severe disease occurs in perinates. Those who survive the neonatal period face a myriad of comorbidities, including systemic and portal hypertension, liver fibrosis, and hepatosplenomegaly. The goal here was to uncover therapeutic strategies for ARPKD. METHODS: We used wild-type and an FPC-mutant cholangiocyte cell line in 3-dimenional cysts and in confluent monolayers to evaluate protein expression using western blotting and protein trafficking using confocal microscopy. RESULTS: We found that the protein level of the cystic fibrosis transmembrane conductance regulator (CFTR) was downregulated. The levels of heat shock proteins (HSPs) were altered in the FPC-mutant cholangiocytes, with HSP27 being downregulated and HSP90 and HSP70 upregulated. FPC-mutant cholangiocytes formed cysts, but normal cells did not. Cyst growth could be reduced by increasing HSP27 protein levels, by HSP90 and HSP70 inhibitor treatments, by silencing HSP90 through messenger RNA inhibition, or by the novel approach of treating the cysts with the CFTR corrector VX-809. In wild-type cholangiocytes, CFTR is present in both apical and basolateral membranes. FPC malfunction resulted in altered colocalization of CFTR with both apical and basolateral membranes. Whereas, treatment with VX-809, increasing HSP27 or inhibiting HSP70 or HSP90 restored CFTR localization toward normal values. CONCLUSIONS: FPC malfunction induces the formation of cysts, which are fueled by alterations in HSPs and in CFTR protein levels and miss-localization. We suggest that CFTR correctors, already in clinical use to treat cystic fibrosis, could also be used as a treatment for ARPKD. Elsevier 2021-07-27 /pmc/articles/PMC8529398/ /pubmed/34329764 http://dx.doi.org/10.1016/j.jcmgh.2021.07.012 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Research Yanda, Murali K. Tomar, Vartika Cebotaru, Liudmila Therapeutic Potential for CFTR Correctors in Autosomal Recessive Polycystic Kidney Disease |
title | Therapeutic Potential for CFTR Correctors in Autosomal Recessive Polycystic Kidney Disease |
title_full | Therapeutic Potential for CFTR Correctors in Autosomal Recessive Polycystic Kidney Disease |
title_fullStr | Therapeutic Potential for CFTR Correctors in Autosomal Recessive Polycystic Kidney Disease |
title_full_unstemmed | Therapeutic Potential for CFTR Correctors in Autosomal Recessive Polycystic Kidney Disease |
title_short | Therapeutic Potential for CFTR Correctors in Autosomal Recessive Polycystic Kidney Disease |
title_sort | therapeutic potential for cftr correctors in autosomal recessive polycystic kidney disease |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8529398/ https://www.ncbi.nlm.nih.gov/pubmed/34329764 http://dx.doi.org/10.1016/j.jcmgh.2021.07.012 |
work_keys_str_mv | AT yandamuralik therapeuticpotentialforcftrcorrectorsinautosomalrecessivepolycystickidneydisease AT tomarvartika therapeuticpotentialforcftrcorrectorsinautosomalrecessivepolycystickidneydisease AT cebotaruliudmila therapeuticpotentialforcftrcorrectorsinautosomalrecessivepolycystickidneydisease |