Cargando…
Cardiac-derived TGF-β1 confers resistance to diet-induced obesity through the regulation of adipocyte size and function
Regulation of organismal homeostasis in response to nutrient availability is a vital physiological process that involves inter-organ communication. Understanding the mechanisms controlling systemic cross-talk for the maintenance of metabolic health is critical to counteract diet-induced obesity. Her...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8529557/ https://www.ncbi.nlm.nih.gov/pubmed/34583010 http://dx.doi.org/10.1016/j.molmet.2021.101343 |
Sumario: | Regulation of organismal homeostasis in response to nutrient availability is a vital physiological process that involves inter-organ communication. Understanding the mechanisms controlling systemic cross-talk for the maintenance of metabolic health is critical to counteract diet-induced obesity. Here, we show that cardiac-derived transforming growth factor beta 1 (TGF-β1) protects against weight gain and glucose intolerance in mice subjected to high-fat diet. Secretion of TGF-β1 by cardiomyocytes correlates with the bioavailability of this factor in circulation. TGF-β1 prevents adipose tissue inflammation independent of body mass and glucose metabolism phenotypes, indicating protection from adipocyte dysfunction-driven immune cell recruitment. TGF-β1 alters the gene expression programs in white adipocytes, favoring their fatty acid oxidation and consequently increasing their mitochondrial oxygen consumption rates. Ultimately, subcutaneous and visceral white adipose tissue from cadiac-specific TGF-β1 transgenic mice fail to undergo cellular hypertrophy, leading to reduced overall adiposity during high-fat feeding. Thus, TGF-β1 is a critical mediator of heart-fat communication for the regulation of systemic metabolism. |
---|