Cargando…

Small peptide targeting ANP32A as a novel strategy for acute myeloid leukemia therapy

Clinic therapy of acute myeloid leukemia (AML) remains unsatisfactory that urges for development of novel strategies. Recent studies identified ANP32A as a novel biomarker of unfavorable outcome of leukemia, which promoted leukemogenesis by increasing H3 acetylation and the expression of lipid metab...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Manman, Guo, Hao, Zhang, Xuechun, Wang, Xiyang, Tao, Hu, Zhang, Tan, Peng, Min, Zhang, Min, Huang, Zan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Neoplasia Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8529559/
https://www.ncbi.nlm.nih.gov/pubmed/34678588
http://dx.doi.org/10.1016/j.tranon.2021.101245
Descripción
Sumario:Clinic therapy of acute myeloid leukemia (AML) remains unsatisfactory that urges for development of novel strategies. Recent studies identified ANP32A as a novel biomarker of unfavorable outcome of leukemia, which promoted leukemogenesis by increasing H3 acetylation and the expression of lipid metabolism genes. It is of great significance to investigate whether targeting ANP32A is a novel strategy for leukemia therapy. To target ANP32A, we identified a peptide that competed with ANP32A to bind to histone 3 (termed as H3-binding peptide, H3BP). Disrupting ANP32A and H3 interaction by the overexpression of H3BP-GFP fusion protein mimicked the effect of ANP32A knockdown, impaired H3 acetylation on multiple locus of target genes, reduced proliferation, and caused apoptosis in leukemia cells. Furthermore, a synthesized membrane-penetrating peptide TAT-H3BP effectively entered into leukemia cells and phenocopied such effect. In vivo, TAT-H3BP showed potent efficacy against leukemia: Intra-tumor injection of TAT-H3BP significantly reduced the volume of subcutaneous tumors in nude mice and recipient mice engrafted with TAT-H3BP-pretreated 6133/MPL W515L cells exhibited ameliorated leukemia burden and prolonged survival. Noticeably, TAT-H3BP efficiently suppressed proliferation and colony-forming unit of human primary AML cells without affecting normal cord blood cells. Our findings demonstrate that intervening the physical interaction of ANP32A with H3 impairs the oncogenicity of ANP32A and may be a promising therapeutic strategy against AML.