Cargando…
GACDN: generative adversarial feature completion and diagnosis network for COVID-19
BACKGROUND: The outbreak of coronavirus disease 2019 (COVID-19) causes tens of million infection world-wide. Many machine learning methods have been proposed for the computer-aided diagnosis between COVID-19 and community-acquired pneumonia (CAP) from chest computed tomography (CT) images. Most of t...
Autores principales: | Zhu, Qi, Ye, Haizhou, Sun, Liang, Li, Zhongnian, Wang, Ran, Shi, Feng, Shen, Dinggang, Zhang, Daoqiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8529574/ https://www.ncbi.nlm.nih.gov/pubmed/34674660 http://dx.doi.org/10.1186/s12880-021-00681-6 |
Ejemplares similares
-
Generative adversarial networks for generating synthetic features for Wi-Fi signal quality
por: Castelli, Mauro, et al.
Publicado: (2021) -
Electrocardiogram generation with a bidirectional LSTM-CNN generative adversarial network
por: Zhu, Fei, et al.
Publicado: (2019) -
Generating mobility networks with generative adversarial networks
por: Mauro, Giovanni, et al.
Publicado: (2022) -
Generative adversarial networks for image generation
por: Mao, Xudong, et al.
Publicado: (2021) -
Hands-on generative adversarial networks with Keras: your guide to implementing next-generation generative adversarial networks
por: Valle, Rafael
Publicado: (2019)