Cargando…
WaterMap and Molecular Dynamic Simulation-Guided Discovery of Potential PAK1 Inhibitors Using Repurposing Approaches
[Image: see text] p21-Activated kinase 1 (PAK1) is positioned at the nexus of several oncogenic signaling pathways. Currently, there are no approved inhibitors for disabling the transfer of phosphate in the active site directly, as they are limited by lower affinity, and poor kinase selectivity. In...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8529594/ https://www.ncbi.nlm.nih.gov/pubmed/34693105 http://dx.doi.org/10.1021/acsomega.1c02032 |
_version_ | 1784586501275779072 |
---|---|
author | Biswal, Jayashree Jayaprakash, Prajisha Rayala, Suresh Kumar Venkatraman, Ganesh Rangaswamy, Raghu Jeyaraman, Jeyakanthan |
author_facet | Biswal, Jayashree Jayaprakash, Prajisha Rayala, Suresh Kumar Venkatraman, Ganesh Rangaswamy, Raghu Jeyaraman, Jeyakanthan |
author_sort | Biswal, Jayashree |
collection | PubMed |
description | [Image: see text] p21-Activated kinase 1 (PAK1) is positioned at the nexus of several oncogenic signaling pathways. Currently, there are no approved inhibitors for disabling the transfer of phosphate in the active site directly, as they are limited by lower affinity, and poor kinase selectivity. In this work, a repurposing study utilizing FDA-approved drugs from the DrugBank database was pursued with an initial selection of 27 molecules out of ∼2162 drug molecules, based on their docking energies and molecular interaction patterns. From the molecules that were considered for WaterMap analysis, seven molecules, namely, Mitoxantrone, Labetalol, Acalabrutinib, Sacubitril, Flubendazole, Trazodone, and Niraparib, ascertained the ability to overlap with high-energy hydration sites. Considering many other displaced unfavorable water molecules, only Acalabrutinib, Flubendazole, and Trazodone molecules highlighted their prominence in terms of binding affinity gains through ΔΔG that ranges between 6.44 and 2.59 kcal/mol. Even if Mitoxantrone exhibited the highest docking score and greater interaction strength, it did not comply with the WaterMap and molecular dynamics simulation results. Moreover, detailed MD simulation trajectory analyses suggested that the drug molecules Flubendazole, Niraparib, and Acalabrutinib were highly stable, observed from their RMSD values and consistent interaction pattern with Glu315, Glu345, Leu347, and Asp407 including the hydrophobic interactions maintained in the three replicates. However, the drug molecule Trazodone displayed a loss of crucial interaction with Leu347, which was essential to inhibit the kinase activity of PAK1. The molecular orbital and electrostatic potential analyses elucidated the reactivity and strong complementarity potentials of the drug molecules in the binding pocket of PAK1. Therefore, the CADD-based reposition efforts, reported in this work, helped in the successful identification of new PAK1 inhibitors that requires further investigation by in vitro analysis. |
format | Online Article Text |
id | pubmed-8529594 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-85295942021-10-22 WaterMap and Molecular Dynamic Simulation-Guided Discovery of Potential PAK1 Inhibitors Using Repurposing Approaches Biswal, Jayashree Jayaprakash, Prajisha Rayala, Suresh Kumar Venkatraman, Ganesh Rangaswamy, Raghu Jeyaraman, Jeyakanthan ACS Omega [Image: see text] p21-Activated kinase 1 (PAK1) is positioned at the nexus of several oncogenic signaling pathways. Currently, there are no approved inhibitors for disabling the transfer of phosphate in the active site directly, as they are limited by lower affinity, and poor kinase selectivity. In this work, a repurposing study utilizing FDA-approved drugs from the DrugBank database was pursued with an initial selection of 27 molecules out of ∼2162 drug molecules, based on their docking energies and molecular interaction patterns. From the molecules that were considered for WaterMap analysis, seven molecules, namely, Mitoxantrone, Labetalol, Acalabrutinib, Sacubitril, Flubendazole, Trazodone, and Niraparib, ascertained the ability to overlap with high-energy hydration sites. Considering many other displaced unfavorable water molecules, only Acalabrutinib, Flubendazole, and Trazodone molecules highlighted their prominence in terms of binding affinity gains through ΔΔG that ranges between 6.44 and 2.59 kcal/mol. Even if Mitoxantrone exhibited the highest docking score and greater interaction strength, it did not comply with the WaterMap and molecular dynamics simulation results. Moreover, detailed MD simulation trajectory analyses suggested that the drug molecules Flubendazole, Niraparib, and Acalabrutinib were highly stable, observed from their RMSD values and consistent interaction pattern with Glu315, Glu345, Leu347, and Asp407 including the hydrophobic interactions maintained in the three replicates. However, the drug molecule Trazodone displayed a loss of crucial interaction with Leu347, which was essential to inhibit the kinase activity of PAK1. The molecular orbital and electrostatic potential analyses elucidated the reactivity and strong complementarity potentials of the drug molecules in the binding pocket of PAK1. Therefore, the CADD-based reposition efforts, reported in this work, helped in the successful identification of new PAK1 inhibitors that requires further investigation by in vitro analysis. American Chemical Society 2021-10-05 /pmc/articles/PMC8529594/ /pubmed/34693105 http://dx.doi.org/10.1021/acsomega.1c02032 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Biswal, Jayashree Jayaprakash, Prajisha Rayala, Suresh Kumar Venkatraman, Ganesh Rangaswamy, Raghu Jeyaraman, Jeyakanthan WaterMap and Molecular Dynamic Simulation-Guided Discovery of Potential PAK1 Inhibitors Using Repurposing Approaches |
title | WaterMap and Molecular Dynamic Simulation-Guided Discovery
of Potential PAK1 Inhibitors Using Repurposing Approaches |
title_full | WaterMap and Molecular Dynamic Simulation-Guided Discovery
of Potential PAK1 Inhibitors Using Repurposing Approaches |
title_fullStr | WaterMap and Molecular Dynamic Simulation-Guided Discovery
of Potential PAK1 Inhibitors Using Repurposing Approaches |
title_full_unstemmed | WaterMap and Molecular Dynamic Simulation-Guided Discovery
of Potential PAK1 Inhibitors Using Repurposing Approaches |
title_short | WaterMap and Molecular Dynamic Simulation-Guided Discovery
of Potential PAK1 Inhibitors Using Repurposing Approaches |
title_sort | watermap and molecular dynamic simulation-guided discovery
of potential pak1 inhibitors using repurposing approaches |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8529594/ https://www.ncbi.nlm.nih.gov/pubmed/34693105 http://dx.doi.org/10.1021/acsomega.1c02032 |
work_keys_str_mv | AT biswaljayashree watermapandmoleculardynamicsimulationguideddiscoveryofpotentialpak1inhibitorsusingrepurposingapproaches AT jayaprakashprajisha watermapandmoleculardynamicsimulationguideddiscoveryofpotentialpak1inhibitorsusingrepurposingapproaches AT rayalasureshkumar watermapandmoleculardynamicsimulationguideddiscoveryofpotentialpak1inhibitorsusingrepurposingapproaches AT venkatramanganesh watermapandmoleculardynamicsimulationguideddiscoveryofpotentialpak1inhibitorsusingrepurposingapproaches AT rangaswamyraghu watermapandmoleculardynamicsimulationguideddiscoveryofpotentialpak1inhibitorsusingrepurposingapproaches AT jeyaramanjeyakanthan watermapandmoleculardynamicsimulationguideddiscoveryofpotentialpak1inhibitorsusingrepurposingapproaches |