Cargando…
Epigenetic interplay between methylation and miRNA in bladder cancer: focus on isoform expression
BACKGROUND: Various epigenetic factors are responsible for the non-genetic regulation on gene expression. The epigenetically dysregulated oncogenes or tumor suppressors by miRNA and/or DNA methylation are often observed in cancer cells. Each of these epigenetic regulators has been studied well in ca...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8529714/ https://www.ncbi.nlm.nih.gov/pubmed/34674656 http://dx.doi.org/10.1186/s12864-021-08052-9 |
Sumario: | BACKGROUND: Various epigenetic factors are responsible for the non-genetic regulation on gene expression. The epigenetically dysregulated oncogenes or tumor suppressors by miRNA and/or DNA methylation are often observed in cancer cells. Each of these epigenetic regulators has been studied well in cancer progressions; however, their mutual regulatory relationship in cancer still remains unclear. In this study, we propose an integrative framework to systematically investigate epigenetic interactions between miRNA and methylation at the alternatively spliced mRNA level in bladder cancer. Each of these epigenetic regulators has been studied well in cancer progressions; however, their mutual regulatory relationship in cancer still remains unclear. RESULTS: The integrative analyses yielded 136 significant combinations (methylation, miRNA and isoform). Further, overall survival analysis on the 136 combinations based on methylation and miRNA, high and low expression groups resulted in 13 combinations associated with survival. Additionally, different interaction patterns were examined. CONCLUSIONS: Our study provides a higher resolution of molecular insight into the crosstalk between two epigenetic factors, DNA methylation and miRNA. Given the importance of epigenetic interactions and alternative splicing in cancer, it is timely to identify and understand the underlying mechanisms based on epigenetic markers and their interactions in cancer, leading to alternative splicing with primary functional impact. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-021-08052-9. |
---|