Cargando…
From Cellular Infiltration Assessment to a Functional Gene Set-Based Prognostic Model for Breast Cancer
BACKGROUND: Cancer heterogeneity is a major challenge in clinical practice, and to some extent, the varying combinations of different cell types and their cross-talk with tumor cells that modulate the tumor microenvironment (TME) are thought to be responsible. Despite recent methodological advances...
Autores principales: | Li, Huamei, Huang, Yiting, Sharma, Amit, Ming, Wenglong, Luo, Kun, Gu, Zhongze, Sun, Xiao, Liu, Hongde |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8529968/ https://www.ncbi.nlm.nih.gov/pubmed/34691065 http://dx.doi.org/10.3389/fimmu.2021.751530 |
Ejemplares similares
-
A deconvolution method and its application in analyzing the cellular fractions in acute myeloid leukemia samples
por: Li, Huamei, et al.
Publicado: (2020) -
Prognostic gene expression signature revealed the involvement of mutational pathways in cancer genome
por: Liu, Hongde, et al.
Publicado: (2020) -
DeconPeaker, a Deconvolution Model to Identify Cell Types Based on Chromatin Accessibility in ATAC-Seq Data of Mixture Samples
por: Li, Huamei, et al.
Publicado: (2020) -
A degradome-based prognostic signature that correlates with immune infiltration and tumor mutation burden in breast cancer
por: Luo, Yulou, et al.
Publicado: (2023) -
Prognostic Landscape of Tumor-Infiltrating T and B Cells in Human Cancer
por: Zheng, Ming, et al.
Publicado: (2022)