Cargando…
Deepening into the suitability of using pre-trained models of ImageNet against a lightweight convolutional neural network in medical imaging: an experimental study
Transfer learning (TL) has been widely utilized to address the lack of training data for deep learning models. Specifically, one of the most popular uses of TL has been for the pre-trained models of the ImageNet dataset. Nevertheless, although these pre-trained models have shown an effective perform...
Autores principales: | Alzubaidi, Laith, Duan, Ye, Al-Dujaili, Ayad, Ibraheem, Ibraheem Kasim, Alkenani, Ahmed H., Santamaría, Jose, Fadhel, Mohammed A., Al-Shamma, Omran, Zhang, Jinglan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8530098/ https://www.ncbi.nlm.nih.gov/pubmed/34722871 http://dx.doi.org/10.7717/peerj-cs.715 |
Ejemplares similares
-
Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
por: Alzubaidi, Laith, et al.
Publicado: (2021) -
Novel Transfer Learning Approach for Medical Imaging with Limited Labeled Data
por: Alzubaidi, Laith, et al.
Publicado: (2021) -
Ten years after ImageNet: a 360° perspective on artificial intelligence
por: Chawla, Sanjay, et al.
Publicado: (2023) -
Improving feature extraction from histopathological images through a fine-tuning ImageNet model
por: Li, Xingyu, et al.
Publicado: (2022) -
Lightweight data management with dtool
por: Olsson, Tjelvar S.G., et al.
Publicado: (2019)