Cargando…
T-cell receptor repertoires as potential diagnostic markers for patients with COVID-19
OBJECTIVE: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing global health emergency. T-cell receptors (TCRs) are crucial mediators of antiviral adaptive immunity. This study sought to comprehensively characterize the TCR reper...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8530772/ https://www.ncbi.nlm.nih.gov/pubmed/34688948 http://dx.doi.org/10.1016/j.ijid.2021.10.033 |
Sumario: | OBJECTIVE: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing global health emergency. T-cell receptors (TCRs) are crucial mediators of antiviral adaptive immunity. This study sought to comprehensively characterize the TCR repertoire changes in patients with COVID-19. METHODS: A large sample size multi-center randomized controlled trial was implemented to study the features of the TCR repertoire and identify COVID-19 disease-related TCR sequences. RESULTS: It was found that some T-cell receptor beta chain (TCRβ) features differed markedly between COVID-19 patients and healthy controls, including decreased repertoire diversity, longer complementarity-determining region 3 (CDR3) length, skewed utilization of the TCRβ variable gene/joining gene (TRBV/J), and a high degree of TCRβ sharing in COVID-19 patients. Moreover, this analysis showed that TCR repertoire diversity declines with aging, which may be a cause of the higher infection and mortality rates in elderly patients. Importantly, a set of TCRβ clones that can distinguish COVID-19 patients from healthy controls with high accuracy was identified. Notably, this diagnostic model demonstrates 100% specificity and 82.68% sensitivity at 0–3 days post diagnosis. CONCLUSIONS: This study lays the foundation for immunodiagnosis and the development of medicines and vaccines for COVID-19 patients. |
---|