Cargando…

An Emiliania huxleyi pan-transcriptome reveals basal strain specificity in gene expression patterns

Emiliania huxleyi is a cosmopolitan coccolithophore widespread in temperate oceans. This unicellular photoautotroph forms massive recurring blooms that play an important role in large biogeochemical cycles of carbon and sulfur, which play a role in climate change. The mechanism of bloom formation an...

Descripción completa

Detalles Bibliográficos
Autores principales: Feldmesser, Ester, Ben-Dor, Shifra, Vardi, Assaf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8531018/
https://www.ncbi.nlm.nih.gov/pubmed/34675226
http://dx.doi.org/10.1038/s41598-021-00072-5
Descripción
Sumario:Emiliania huxleyi is a cosmopolitan coccolithophore widespread in temperate oceans. This unicellular photoautotroph forms massive recurring blooms that play an important role in large biogeochemical cycles of carbon and sulfur, which play a role in climate change. The mechanism of bloom formation and demise, controlled by giant viruses that routinely infect these blooms, is poorly understood. We generated a pan-transcriptome of E. huxleyi, derived from three strains with different susceptibility to viral infection. Expression profiling of E. huxleyi sensitive and resistant strains showed major basal differences, including many genes that are induced upon viral infection. This suggests that basal gene expression can affect the host metabolic state and the susceptibility of E. huxleyi to viruses. Due to its ecological importance, the pan-transcriptome and its protein translation, applicable to many E. huxleyi strains, is a powerful resource for investigation of eukaryotic microbial communities.