Cargando…
Machine learning using the extreme gradient boosting (XGBoost) algorithm predicts 5-day delta of SOFA score at ICU admission in COVID-19 patients
BACKGROUND: Accurate risk stratification of critically ill patients with coronavirus disease 2019 (COVID-19) is essential for optimizing resource allocation, delivering targeted interventions, and maximizing patient survival probability. Machine learning (ML) techniques are attracting increased inte...
Autores principales: | Montomoli, Jonathan, Romeo, Luca, Moccia, Sara, Bernardini, Michele, Migliorelli, Lucia, Berardini, Daniele, Donati, Abele, Carsetti, Andrea, Bocci, Maria Grazia, Wendel Garcia, Pedro David, Fumeaux, Thierry, Guerci, Philippe, Schüpbach, Reto Andreas, Ince, Can, Frontoni, Emanuele, Hilty, Matthias Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8531027/ https://www.ncbi.nlm.nih.gov/pubmed/36785563 http://dx.doi.org/10.1016/j.jointm.2021.09.002 |
Ejemplares similares
-
Prognostic factors associated with mortality risk and disease progression in 639 critically ill patients with COVID-19 in Europe: Initial report of the international RISC-19-ICU prospective observational cohort
por: Wendel Garcia, Pedro David, et al.
Publicado: (2020) -
A Unified Hierarchical XGBoost model for classifying priorities for COVID-19 vaccination campaign
por: Romeo, Luca, et al.
Publicado: (2022) -
The babyPose dataset
por: Migliorelli, Lucia, et al.
Publicado: (2020) -
Heartbeat Detection by Laser Doppler Vibrometry and Machine Learning
por: Antognoli, Luca, et al.
Publicado: (2020) -
Development of a measurement setup to detect the level of physical activity and social distancing of ageing people in a social garden during COVID-19 pandemic
por: Casaccia, Sara, et al.
Publicado: (2021)