Cargando…

Single-center versus multi-center biparametric MRI radiomics approach for clinically significant peripheral zone prostate cancer

OBJECTIVES: To investigate a previously developed radiomics-based biparametric magnetic resonance imaging (bpMRI) approach for discrimination of clinically significant peripheral zone prostate cancer (PZ csPCa) using multi-center, multi-vendor (McMv) and single-center, single-vendor (ScSv) datasets....

Descripción completa

Detalles Bibliográficos
Autores principales: Bleker, Jeroen, Yakar, Derya, van Noort, Bram, Rouw, Dennis, de Jong, Igle Jan, Dierckx, Rudi A. J. O., Kwee, Thomas C., Huisman, Henkjan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8531183/
https://www.ncbi.nlm.nih.gov/pubmed/34674058
http://dx.doi.org/10.1186/s13244-021-01099-y
Descripción
Sumario:OBJECTIVES: To investigate a previously developed radiomics-based biparametric magnetic resonance imaging (bpMRI) approach for discrimination of clinically significant peripheral zone prostate cancer (PZ csPCa) using multi-center, multi-vendor (McMv) and single-center, single-vendor (ScSv) datasets. METHODS: This study’s starting point was a previously developed ScSv algorithm for PZ csPCa whose performance was demonstrated in a single-center dataset. A McMv dataset was collected, and 262 PZ PCa lesions (9 centers, 2 vendors) were selected to identically develop a multi-center algorithm. The single-center algorithm was then applied to the multi-center dataset (single–multi-validation), and the McMv algorithm was applied to both the multi-center dataset (multi–multi-validation) and the previously used single-center dataset (multi–single-validation). The areas under the curve (AUCs) of the validations were compared using bootstrapping. RESULTS: Previously the single–single validation achieved an AUC of 0.82 (95% CI 0.71–0.92), a significant performance reduction of 27.2% compared to the single–multi-validation AUC of 0.59 (95% CI 0.51–0.68). The new multi-center model achieved a multi–multi-validation AUC of 0.75 (95% CI 0.64–0.84). Compared to the multi–single-validation AUC of 0.66 (95% CI 0.56–0.75), the performance did not decrease significantly (p value: 0.114). Bootstrapped comparison showed similar single-center performances and a significantly different multi-center performance (p values: 0.03, 0.012). CONCLUSIONS: A single-center trained radiomics-based bpMRI model does not generalize to multi-center data. Multi-center trained radiomics-based bpMRI models do generalize, have equal single-center performance and perform better on multi-center data. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13244-021-01099-y.