Cargando…
Quantifying the Importance of Abiotic and Biotic Factors Governing the Succession of Gut Microbiota Over Shrimp Ontogeny
Intensive studies have evaluated abiotic factors in shaping host gut microbiota. In contrast, little is known on how and to what extent abiotic (geochemical variables) and biotic (i.e., surrounding microbes, younger shrimp, and age) factors assemble the gut microbiota over shrimp ontogeny. Consideri...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8531273/ https://www.ncbi.nlm.nih.gov/pubmed/34691004 http://dx.doi.org/10.3389/fmicb.2021.752750 |
_version_ | 1784586817998159872 |
---|---|
author | Zhang, Wenqian Zhu, Zidong Chen, Jiong Qiu, Qiongfen Xiong, Jinbo |
author_facet | Zhang, Wenqian Zhu, Zidong Chen, Jiong Qiu, Qiongfen Xiong, Jinbo |
author_sort | Zhang, Wenqian |
collection | PubMed |
description | Intensive studies have evaluated abiotic factors in shaping host gut microbiota. In contrast, little is known on how and to what extent abiotic (geochemical variables) and biotic (i.e., surrounding microbes, younger shrimp, and age) factors assemble the gut microbiota over shrimp ontogeny. Considering the functional importance of gut microbiota in improving host fitness, this knowledge is fundamental to sustain a desirable gut microbiota for a healthy aquaculture. Here, we characterized the successional rules of both the shrimp gut and rearing water bacterial communities over the entire shrimp farming. Both the gut and rearing water bacterial communities exhibited the time decay of similarity relationship, with significantly lower temporal turnover rate for the gut microbiota, which were primarily governed by shrimp age (days postlarval inoculation) and water pH. Gut commensals were primary sourced (averaged 60.3%) from their younger host, rather than surrounding bacterioplankton (19.1%). A structural equation model revealed that water salinity, pH, total phosphorus, and dissolve oxygen directly governed bacterioplankton communities but not for the gut microbiota. In addition, shrimp gut microbiota did not simply mirror the rearing bacterioplankton communities. The gut microbiota tended to be governed by variable selection over shrimp ontogeny, while the rearing bacterioplankton community was shaped by homogeneous selection. However, the determinism of rare and stochasticity of abundant subcommunities were consistent between shrimp gut and rearing water. These findings highlight the importance of independently interpreting host-associated and free-living communities, as well as their rare and abundant subcommunities for a comprehensive understanding of the ecological processes that govern microbial successions. |
format | Online Article Text |
id | pubmed-8531273 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-85312732021-10-23 Quantifying the Importance of Abiotic and Biotic Factors Governing the Succession of Gut Microbiota Over Shrimp Ontogeny Zhang, Wenqian Zhu, Zidong Chen, Jiong Qiu, Qiongfen Xiong, Jinbo Front Microbiol Microbiology Intensive studies have evaluated abiotic factors in shaping host gut microbiota. In contrast, little is known on how and to what extent abiotic (geochemical variables) and biotic (i.e., surrounding microbes, younger shrimp, and age) factors assemble the gut microbiota over shrimp ontogeny. Considering the functional importance of gut microbiota in improving host fitness, this knowledge is fundamental to sustain a desirable gut microbiota for a healthy aquaculture. Here, we characterized the successional rules of both the shrimp gut and rearing water bacterial communities over the entire shrimp farming. Both the gut and rearing water bacterial communities exhibited the time decay of similarity relationship, with significantly lower temporal turnover rate for the gut microbiota, which were primarily governed by shrimp age (days postlarval inoculation) and water pH. Gut commensals were primary sourced (averaged 60.3%) from their younger host, rather than surrounding bacterioplankton (19.1%). A structural equation model revealed that water salinity, pH, total phosphorus, and dissolve oxygen directly governed bacterioplankton communities but not for the gut microbiota. In addition, shrimp gut microbiota did not simply mirror the rearing bacterioplankton communities. The gut microbiota tended to be governed by variable selection over shrimp ontogeny, while the rearing bacterioplankton community was shaped by homogeneous selection. However, the determinism of rare and stochasticity of abundant subcommunities were consistent between shrimp gut and rearing water. These findings highlight the importance of independently interpreting host-associated and free-living communities, as well as their rare and abundant subcommunities for a comprehensive understanding of the ecological processes that govern microbial successions. Frontiers Media S.A. 2021-10-08 /pmc/articles/PMC8531273/ /pubmed/34691004 http://dx.doi.org/10.3389/fmicb.2021.752750 Text en Copyright © 2021 Zhang, Zhu, Chen, Qiu and Xiong. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Zhang, Wenqian Zhu, Zidong Chen, Jiong Qiu, Qiongfen Xiong, Jinbo Quantifying the Importance of Abiotic and Biotic Factors Governing the Succession of Gut Microbiota Over Shrimp Ontogeny |
title | Quantifying the Importance of Abiotic and Biotic Factors Governing the Succession of Gut Microbiota Over Shrimp Ontogeny |
title_full | Quantifying the Importance of Abiotic and Biotic Factors Governing the Succession of Gut Microbiota Over Shrimp Ontogeny |
title_fullStr | Quantifying the Importance of Abiotic and Biotic Factors Governing the Succession of Gut Microbiota Over Shrimp Ontogeny |
title_full_unstemmed | Quantifying the Importance of Abiotic and Biotic Factors Governing the Succession of Gut Microbiota Over Shrimp Ontogeny |
title_short | Quantifying the Importance of Abiotic and Biotic Factors Governing the Succession of Gut Microbiota Over Shrimp Ontogeny |
title_sort | quantifying the importance of abiotic and biotic factors governing the succession of gut microbiota over shrimp ontogeny |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8531273/ https://www.ncbi.nlm.nih.gov/pubmed/34691004 http://dx.doi.org/10.3389/fmicb.2021.752750 |
work_keys_str_mv | AT zhangwenqian quantifyingtheimportanceofabioticandbioticfactorsgoverningthesuccessionofgutmicrobiotaovershrimpontogeny AT zhuzidong quantifyingtheimportanceofabioticandbioticfactorsgoverningthesuccessionofgutmicrobiotaovershrimpontogeny AT chenjiong quantifyingtheimportanceofabioticandbioticfactorsgoverningthesuccessionofgutmicrobiotaovershrimpontogeny AT qiuqiongfen quantifyingtheimportanceofabioticandbioticfactorsgoverningthesuccessionofgutmicrobiotaovershrimpontogeny AT xiongjinbo quantifyingtheimportanceofabioticandbioticfactorsgoverningthesuccessionofgutmicrobiotaovershrimpontogeny |