Cargando…

Chinese Language Feature Analysis Based on Multilayer Self-Organizing Neural Network and Data Mining Techniques

As one of the oldest languages in the world, Chinese has a long cultural history and unique language charm. The multilayer self-organizing neural network and data mining techniques have been widely used and can achieve high-precision prediction in different fields. However, they are hardly applied t...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Xiujin, Liu, Shengfu, Zhang, Hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8531822/
https://www.ncbi.nlm.nih.gov/pubmed/34691170
http://dx.doi.org/10.1155/2021/4105784
Descripción
Sumario:As one of the oldest languages in the world, Chinese has a long cultural history and unique language charm. The multilayer self-organizing neural network and data mining techniques have been widely used and can achieve high-precision prediction in different fields. However, they are hardly applied to Chinese language feature analysis. In order to accurately analyze the characteristics of Chinese language, this paper uses the multilayer self-organizing neural network and the corresponding data mining technology for feature recognition and then compared it with other different types of neural network algorithms. The results show that the multilayer self-organizing neural network can make the accuracy, recall, and F1 score of feature recognition reach 68.69%, 80.21%, and 70.19%, respectively, when there are many samples. Under the influence of strong noise, it keeps high efficiency of feature analysis. This shows that the multilayer self-organizing neural network has superior performance and can provide strong support for Chinese language feature analysis.