Cargando…

β3 adrenergic receptor as potential therapeutic target in ADPKD

Autosomal dominant polycystic kidney disease (ADPKD) disrupts renal parenchyma through progressive expansion of fluid‐filled cysts. The only approved pharmacotherapy for ADKPD involves the blockade of the vasopressin type 2 receptor (V2R). V2R is a GPCR expressed by a subset of renal tubular cells a...

Descripción completa

Detalles Bibliográficos
Autores principales: Schena, Giorgia, Carmosino, Monica, Chiurlia, Samantha, Onuchic, Laura, Mastropasqua, Mauro, Maiorano, Eugenio, Schena, Francesco P., Caplan, Michael J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8531837/
https://www.ncbi.nlm.nih.gov/pubmed/34676684
http://dx.doi.org/10.14814/phy2.15058
Descripción
Sumario:Autosomal dominant polycystic kidney disease (ADPKD) disrupts renal parenchyma through progressive expansion of fluid‐filled cysts. The only approved pharmacotherapy for ADKPD involves the blockade of the vasopressin type 2 receptor (V2R). V2R is a GPCR expressed by a subset of renal tubular cells and whose activation stimulates cyclic AMP (cAMP) accumulation, which is a major driver of cyst growth. The β3‐adrenergic receptor (β3‐AR) is a GPCR expressed in most segments of the murine nephron, where it modulates cAMP production. Since sympathetic nerve activity, which leads to activation of the β3‐AR, is elevated in patients affected by ADPKD, we hypothesize that β3‐AR might constitute a novel therapeutic target. We find that administration of the selective β3‐AR antagonist SR59230A to an ADPKD mouse model (Pkd1(fl/fl);Pax8(rtTA);TetO‐Cre) decreases cAMP levels, producing a significant reduction in kidney/body weight ratio and a partial improvement in kidney function. Furthermore, cystic mice show significantly higher β3‐AR levels than healthy controls, suggesting a correlation between receptor expression and disease development. Finally, β3‐AR is expressed in human renal tissue and localizes to cyst‐lining epithelial cells in patients. Thus, β3‐AR is a potentially interesting target for the development of new treatments for ADPKD.