Cargando…
Internal Stress and Dislocation Interaction of Plate-Shaped Misfitting Precipitates in Aluminum Alloys
The fine misfit precipitates in age-hardenable aluminum alloys have important roles due to their excellent age-hardening ability, by their interaction with dislocations. The present study focused on the internal stress field of plate-shaped misfitting precipitates to evaluate their roles in dislocat...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8531999/ https://www.ncbi.nlm.nih.gov/pubmed/34640208 http://dx.doi.org/10.3390/ma14195811 |
_version_ | 1784586984284487680 |
---|---|
author | Muraishi, Shinji |
author_facet | Muraishi, Shinji |
author_sort | Muraishi, Shinji |
collection | PubMed |
description | The fine misfit precipitates in age-hardenable aluminum alloys have important roles due to their excellent age-hardening ability, by their interaction with dislocations. The present study focused on the internal stress field of plate-shaped misfitting precipitates to evaluate their roles in dislocation overcoming the precipitates by means of micromechanics based on Green’s function method. The stress field of misfit precipitates on {001} and {111} habit planes were reproduced by homogeneous misfit strain (eigenstrain) of the precipitate (Eshelby inclusion method), and the dislocation motion vector on the primary slip plane was predicted by the force acted on the dislocation by the Peach–Koehler formula. According to simulation results, the dislocation interaction strongly depends on the stress field and geometry of misfit precipitates; repulsive and attractive forces are operated on the dislocations lying on the primary slip plane when the dislocation approaches the misfit precipitates. The hardening ability of different orientations of precipitation variants was discussed in terms of interaction force acted on the dislocation. |
format | Online Article Text |
id | pubmed-8531999 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85319992021-10-23 Internal Stress and Dislocation Interaction of Plate-Shaped Misfitting Precipitates in Aluminum Alloys Muraishi, Shinji Materials (Basel) Article The fine misfit precipitates in age-hardenable aluminum alloys have important roles due to their excellent age-hardening ability, by their interaction with dislocations. The present study focused on the internal stress field of plate-shaped misfitting precipitates to evaluate their roles in dislocation overcoming the precipitates by means of micromechanics based on Green’s function method. The stress field of misfit precipitates on {001} and {111} habit planes were reproduced by homogeneous misfit strain (eigenstrain) of the precipitate (Eshelby inclusion method), and the dislocation motion vector on the primary slip plane was predicted by the force acted on the dislocation by the Peach–Koehler formula. According to simulation results, the dislocation interaction strongly depends on the stress field and geometry of misfit precipitates; repulsive and attractive forces are operated on the dislocations lying on the primary slip plane when the dislocation approaches the misfit precipitates. The hardening ability of different orientations of precipitation variants was discussed in terms of interaction force acted on the dislocation. MDPI 2021-10-04 /pmc/articles/PMC8531999/ /pubmed/34640208 http://dx.doi.org/10.3390/ma14195811 Text en © 2021 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Muraishi, Shinji Internal Stress and Dislocation Interaction of Plate-Shaped Misfitting Precipitates in Aluminum Alloys |
title | Internal Stress and Dislocation Interaction of Plate-Shaped Misfitting Precipitates in Aluminum Alloys |
title_full | Internal Stress and Dislocation Interaction of Plate-Shaped Misfitting Precipitates in Aluminum Alloys |
title_fullStr | Internal Stress and Dislocation Interaction of Plate-Shaped Misfitting Precipitates in Aluminum Alloys |
title_full_unstemmed | Internal Stress and Dislocation Interaction of Plate-Shaped Misfitting Precipitates in Aluminum Alloys |
title_short | Internal Stress and Dislocation Interaction of Plate-Shaped Misfitting Precipitates in Aluminum Alloys |
title_sort | internal stress and dislocation interaction of plate-shaped misfitting precipitates in aluminum alloys |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8531999/ https://www.ncbi.nlm.nih.gov/pubmed/34640208 http://dx.doi.org/10.3390/ma14195811 |
work_keys_str_mv | AT muraishishinji internalstressanddislocationinteractionofplateshapedmisfittingprecipitatesinaluminumalloys |