Cargando…
ILRC: a hybrid biomarker discovery algorithm based on improved L1 regularization and clustering in microarray data
BACKGROUND: Finding significant genes or proteins from gene chip data for disease diagnosis and drug development is an important task. However, the challenge comes from the curse of the data dimension. It is of great significance to use machine learning methods to find important features from the da...
Autores principales: | Yu, Kun, Xie, Weidong, Wang, Linjie, Li, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8532312/ https://www.ncbi.nlm.nih.gov/pubmed/34686127 http://dx.doi.org/10.1186/s12859-021-04443-7 |
Ejemplares similares
-
Determination of biomarkers from microarray data using graph neural network and spectral clustering
por: Yu, Kun, et al.
Publicado: (2021) -
Biomarker Discovery Based on Hybrid Optimization Algorithm and Artificial Neural Networks on Microarray Data for Cancer Classification
por: Moteghaed, Niloofar Yousefi, et al.
Publicado: (2015) -
A novel biomarker selection method combining graph neural network and gene relationships applied to microarray data
por: Xie, Weidong, et al.
Publicado: (2022) -
Merged consensus clustering to assess and improve class discovery with microarray data
por: Simpson, T Ian, et al.
Publicado: (2010) -
A Hybrid Approach for Biomarker Discovery from Microarray Gene Expression Data for Cancer Classification
por: Peng, Yanxiong, et al.
Publicado: (2007)