Cargando…
Long short-term memory (LSTM) recurrent neural network for muscle activity detection
BACKGROUND: The accurate temporal analysis of muscle activation is of great interest in many research areas, spanning from neurorobotic systems to the assessment of altered locomotion patterns in orthopedic and neurological patients and the monitoring of their motor rehabilitation. The performance o...
Autores principales: | Ghislieri, Marco, Cerone, Giacinto Luigi, Knaflitz, Marco, Agostini, Valentina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8532313/ https://www.ncbi.nlm.nih.gov/pubmed/34674720 http://dx.doi.org/10.1186/s12984-021-00945-w |
Ejemplares similares
-
An Algorithm for Choosing the Optimal Number of Muscle Synergies during Walking
por: Ballarini, Riccardo, et al.
Publicado: (2021) -
Muscle synergies in Parkinson’s disease before and after the deep brain stimulation of the bilateral subthalamic nucleus
por: Ghislieri, Marco, et al.
Publicado: (2023) -
Language Identification in Short Utterances Using Long Short-Term Memory (LSTM) Recurrent Neural Networks
por: Zazo, Ruben, et al.
Publicado: (2016) -
Evaluation of Muscle Function by Means of a Muscle-Specific and a Global Index
por: Rosati, Samanta, et al.
Publicado: (2021) -
Surface Electromyography Applied to Gait Analysis: How to Improve Its Impact in Clinics?
por: Agostini, Valentina, et al.
Publicado: (2020)