Cargando…

MINTIE: identifying novel structural and splice variants in transcriptomes using RNA-seq data

Calling fusion genes from RNA-seq data is well established, but other transcriptional variants are difficult to detect using existing approaches. To identify all types of variants in transcriptomes we developed MINTIE, an integrated pipeline for RNA-seq data. We take a reference-free approach, combi...

Descripción completa

Detalles Bibliográficos
Autores principales: Cmero, Marek, Schmidt, Breon, Majewski, Ian J., Ekert, Paul G., Oshlack, Alicia, Davidson, Nadia M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8532352/
https://www.ncbi.nlm.nih.gov/pubmed/34686194
http://dx.doi.org/10.1186/s13059-021-02507-8
Descripción
Sumario:Calling fusion genes from RNA-seq data is well established, but other transcriptional variants are difficult to detect using existing approaches. To identify all types of variants in transcriptomes we developed MINTIE, an integrated pipeline for RNA-seq data. We take a reference-free approach, combining de novo assembly of transcripts with differential expression analysis to identify up-regulated novel variants in a case sample. We compare MINTIE with eight other approaches, detecting > 85% of variants while no other method is able to achieve this. We posit that MINTIE will be able to identify new disease variants across a range of disease types. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-021-02507-8.