Cargando…
MINTIE: identifying novel structural and splice variants in transcriptomes using RNA-seq data
Calling fusion genes from RNA-seq data is well established, but other transcriptional variants are difficult to detect using existing approaches. To identify all types of variants in transcriptomes we developed MINTIE, an integrated pipeline for RNA-seq data. We take a reference-free approach, combi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8532352/ https://www.ncbi.nlm.nih.gov/pubmed/34686194 http://dx.doi.org/10.1186/s13059-021-02507-8 |
_version_ | 1784587050070048768 |
---|---|
author | Cmero, Marek Schmidt, Breon Majewski, Ian J. Ekert, Paul G. Oshlack, Alicia Davidson, Nadia M. |
author_facet | Cmero, Marek Schmidt, Breon Majewski, Ian J. Ekert, Paul G. Oshlack, Alicia Davidson, Nadia M. |
author_sort | Cmero, Marek |
collection | PubMed |
description | Calling fusion genes from RNA-seq data is well established, but other transcriptional variants are difficult to detect using existing approaches. To identify all types of variants in transcriptomes we developed MINTIE, an integrated pipeline for RNA-seq data. We take a reference-free approach, combining de novo assembly of transcripts with differential expression analysis to identify up-regulated novel variants in a case sample. We compare MINTIE with eight other approaches, detecting > 85% of variants while no other method is able to achieve this. We posit that MINTIE will be able to identify new disease variants across a range of disease types. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-021-02507-8. |
format | Online Article Text |
id | pubmed-8532352 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-85323522021-10-25 MINTIE: identifying novel structural and splice variants in transcriptomes using RNA-seq data Cmero, Marek Schmidt, Breon Majewski, Ian J. Ekert, Paul G. Oshlack, Alicia Davidson, Nadia M. Genome Biol Method Calling fusion genes from RNA-seq data is well established, but other transcriptional variants are difficult to detect using existing approaches. To identify all types of variants in transcriptomes we developed MINTIE, an integrated pipeline for RNA-seq data. We take a reference-free approach, combining de novo assembly of transcripts with differential expression analysis to identify up-regulated novel variants in a case sample. We compare MINTIE with eight other approaches, detecting > 85% of variants while no other method is able to achieve this. We posit that MINTIE will be able to identify new disease variants across a range of disease types. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-021-02507-8. BioMed Central 2021-10-22 /pmc/articles/PMC8532352/ /pubmed/34686194 http://dx.doi.org/10.1186/s13059-021-02507-8 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Method Cmero, Marek Schmidt, Breon Majewski, Ian J. Ekert, Paul G. Oshlack, Alicia Davidson, Nadia M. MINTIE: identifying novel structural and splice variants in transcriptomes using RNA-seq data |
title | MINTIE: identifying novel structural and splice variants in transcriptomes using RNA-seq data |
title_full | MINTIE: identifying novel structural and splice variants in transcriptomes using RNA-seq data |
title_fullStr | MINTIE: identifying novel structural and splice variants in transcriptomes using RNA-seq data |
title_full_unstemmed | MINTIE: identifying novel structural and splice variants in transcriptomes using RNA-seq data |
title_short | MINTIE: identifying novel structural and splice variants in transcriptomes using RNA-seq data |
title_sort | mintie: identifying novel structural and splice variants in transcriptomes using rna-seq data |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8532352/ https://www.ncbi.nlm.nih.gov/pubmed/34686194 http://dx.doi.org/10.1186/s13059-021-02507-8 |
work_keys_str_mv | AT cmeromarek mintieidentifyingnovelstructuralandsplicevariantsintranscriptomesusingrnaseqdata AT schmidtbreon mintieidentifyingnovelstructuralandsplicevariantsintranscriptomesusingrnaseqdata AT majewskiianj mintieidentifyingnovelstructuralandsplicevariantsintranscriptomesusingrnaseqdata AT ekertpaulg mintieidentifyingnovelstructuralandsplicevariantsintranscriptomesusingrnaseqdata AT oshlackalicia mintieidentifyingnovelstructuralandsplicevariantsintranscriptomesusingrnaseqdata AT davidsonnadiam mintieidentifyingnovelstructuralandsplicevariantsintranscriptomesusingrnaseqdata |