Cargando…
Shape-restricted estimation and spatial clustering of COVID-19 infection rate curves
The study of regional COVID-19 daily reported cases is used to understand pattern of spread and disease progression over time. These data are challenging to model due to noise that is present, which arises from failures in reporting, false positive tests, etc., and the spatial dependence between reg...
Autores principales: | Matuk, James, Guo, Xiaohan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8532378/ https://www.ncbi.nlm.nih.gov/pubmed/34703754 http://dx.doi.org/10.1016/j.spasta.2021.100546 |
Ejemplares similares
-
Understanding Spatial Heterogeneity of COVID-19 Pandemic Using Shape Analysis of Growth Rate Curves
por: Srivastava, Anuj, et al.
Publicado: (2020) -
Modeling Study: Characterizing the Spatial Heterogeneity of the COVID-19 Pandemic through Shape Analysis of Epidemic Curves
por: Srivastava, Anuj, et al.
Publicado: (2021) -
Spatial Clustering of County-Level COVID-19 Rates in the U.S.
por: Andrews, Marcus R., et al.
Publicado: (2021) -
A nonparametric estimation of the infection curve
por: Lin, HuaZhen, et al.
Publicado: (2011) -
Variograms for kriging and clustering of spatial functional data with phase variation
por: Guo, Xiaohan, et al.
Publicado: (2022)