Cargando…

A Heuristic and Data Mining Model for Predicting Broiler House Environment Suitability

SIMPLE SUMMARY: The broiler housing control environment now is primarily based on the rearing temperature. The current study proposes two decision-tree models using flock-based and environmental data such as ambient temperature, air velocity, relative humidity, and ammonia concentration. Data from c...

Descripción completa

Detalles Bibliográficos
Autores principales: Martinez, Angel Antonio Gonzalez, Nääs, Irenilza de Alencar, de Carvalho-Curi, Thayla Morandi Ridolfi, Abe, Jair Minoro, da Silva Lima, Nilsa Duarte
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8532747/
https://www.ncbi.nlm.nih.gov/pubmed/34679810
http://dx.doi.org/10.3390/ani11102780
_version_ 1784587142427574272
author Martinez, Angel Antonio Gonzalez
Nääs, Irenilza de Alencar
de Carvalho-Curi, Thayla Morandi Ridolfi
Abe, Jair Minoro
da Silva Lima, Nilsa Duarte
author_facet Martinez, Angel Antonio Gonzalez
Nääs, Irenilza de Alencar
de Carvalho-Curi, Thayla Morandi Ridolfi
Abe, Jair Minoro
da Silva Lima, Nilsa Duarte
author_sort Martinez, Angel Antonio Gonzalez
collection PubMed
description SIMPLE SUMMARY: The broiler housing control environment now is primarily based on the rearing temperature. The current study proposes two decision-tree models using flock-based and environmental data such as ambient temperature, air velocity, relative humidity, and ammonia concentration. Data from commercial broiler farms were collected and analyzed. An exploratory analysis employed the environmental variables, and a heuristic approach was used to develop a final dataset based on ammonia concentration’s impact on broiler production. The output models were related to dry bulb temperature, relative humidity, air velocity, and ammonia concentration arrays. The resulting trees classify the most suitable commercial broiler environment. Such variable combinations might help to improve environmental control in broiler houses. ABSTRACT: The proper combination of environment and flock-based variables plays a critical role in broiler production. However, the housing environment control is mainly focused on temperature monitoring during the broiler growth process. The present study developed a novel predictive model to predict the broiler (Gallus gallus domesticus) rearing conditions’ suitability using a data-mining process centered on flock-based and environmental variables. Data were recorded inside four commercial controlled environment broiler houses. The data analysis was conducted in three steps. First, we performed an exploratory and descriptive analysis of the environmental data. In the second step, we labeled the target variable that led to a specific broiler-rearing scenario depending on the age of the birds, the environmental dry-bulb temperature and relative humidity, the ammonia concentration, and the ventilation rate. The output (final rearing condition) was discretized into four categories (‘Excellent’, ‘Good’, ‘Moderate’, and ‘Inappropriate’). In the third step, we used the dataset to develop tree models using the data-mining process. The random-tree model only presented accuracy for predicting the ‘Excellent’ and ‘Moderate’ rearing conditions. The decision-tree model had high accuracy and indicated that broiler age, relative humidity, and ammonia concentration play a critical role in proper rearing conditions. Using a large amount of data allows the data-mining approach to building up ‘if–then’ rules that indicate suitable environmental control decision-making by broiler farmers.
format Online
Article
Text
id pubmed-8532747
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-85327472021-10-23 A Heuristic and Data Mining Model for Predicting Broiler House Environment Suitability Martinez, Angel Antonio Gonzalez Nääs, Irenilza de Alencar de Carvalho-Curi, Thayla Morandi Ridolfi Abe, Jair Minoro da Silva Lima, Nilsa Duarte Animals (Basel) Article SIMPLE SUMMARY: The broiler housing control environment now is primarily based on the rearing temperature. The current study proposes two decision-tree models using flock-based and environmental data such as ambient temperature, air velocity, relative humidity, and ammonia concentration. Data from commercial broiler farms were collected and analyzed. An exploratory analysis employed the environmental variables, and a heuristic approach was used to develop a final dataset based on ammonia concentration’s impact on broiler production. The output models were related to dry bulb temperature, relative humidity, air velocity, and ammonia concentration arrays. The resulting trees classify the most suitable commercial broiler environment. Such variable combinations might help to improve environmental control in broiler houses. ABSTRACT: The proper combination of environment and flock-based variables plays a critical role in broiler production. However, the housing environment control is mainly focused on temperature monitoring during the broiler growth process. The present study developed a novel predictive model to predict the broiler (Gallus gallus domesticus) rearing conditions’ suitability using a data-mining process centered on flock-based and environmental variables. Data were recorded inside four commercial controlled environment broiler houses. The data analysis was conducted in three steps. First, we performed an exploratory and descriptive analysis of the environmental data. In the second step, we labeled the target variable that led to a specific broiler-rearing scenario depending on the age of the birds, the environmental dry-bulb temperature and relative humidity, the ammonia concentration, and the ventilation rate. The output (final rearing condition) was discretized into four categories (‘Excellent’, ‘Good’, ‘Moderate’, and ‘Inappropriate’). In the third step, we used the dataset to develop tree models using the data-mining process. The random-tree model only presented accuracy for predicting the ‘Excellent’ and ‘Moderate’ rearing conditions. The decision-tree model had high accuracy and indicated that broiler age, relative humidity, and ammonia concentration play a critical role in proper rearing conditions. Using a large amount of data allows the data-mining approach to building up ‘if–then’ rules that indicate suitable environmental control decision-making by broiler farmers. MDPI 2021-09-24 /pmc/articles/PMC8532747/ /pubmed/34679810 http://dx.doi.org/10.3390/ani11102780 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Martinez, Angel Antonio Gonzalez
Nääs, Irenilza de Alencar
de Carvalho-Curi, Thayla Morandi Ridolfi
Abe, Jair Minoro
da Silva Lima, Nilsa Duarte
A Heuristic and Data Mining Model for Predicting Broiler House Environment Suitability
title A Heuristic and Data Mining Model for Predicting Broiler House Environment Suitability
title_full A Heuristic and Data Mining Model for Predicting Broiler House Environment Suitability
title_fullStr A Heuristic and Data Mining Model for Predicting Broiler House Environment Suitability
title_full_unstemmed A Heuristic and Data Mining Model for Predicting Broiler House Environment Suitability
title_short A Heuristic and Data Mining Model for Predicting Broiler House Environment Suitability
title_sort heuristic and data mining model for predicting broiler house environment suitability
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8532747/
https://www.ncbi.nlm.nih.gov/pubmed/34679810
http://dx.doi.org/10.3390/ani11102780
work_keys_str_mv AT martinezangelantoniogonzalez aheuristicanddataminingmodelforpredictingbroilerhouseenvironmentsuitability
AT naasirenilzadealencar aheuristicanddataminingmodelforpredictingbroilerhouseenvironmentsuitability
AT decarvalhocurithaylamorandiridolfi aheuristicanddataminingmodelforpredictingbroilerhouseenvironmentsuitability
AT abejairminoro aheuristicanddataminingmodelforpredictingbroilerhouseenvironmentsuitability
AT dasilvalimanilsaduarte aheuristicanddataminingmodelforpredictingbroilerhouseenvironmentsuitability
AT martinezangelantoniogonzalez heuristicanddataminingmodelforpredictingbroilerhouseenvironmentsuitability
AT naasirenilzadealencar heuristicanddataminingmodelforpredictingbroilerhouseenvironmentsuitability
AT decarvalhocurithaylamorandiridolfi heuristicanddataminingmodelforpredictingbroilerhouseenvironmentsuitability
AT abejairminoro heuristicanddataminingmodelforpredictingbroilerhouseenvironmentsuitability
AT dasilvalimanilsaduarte heuristicanddataminingmodelforpredictingbroilerhouseenvironmentsuitability