Cargando…

Positive Association between the Use of Quinolones in Food Animals and the Prevalence of Fluoroquinolone Resistance in E. coli and K. pneumoniae, A. baumannii and P. aeruginosa: A Global Ecological Analysis

(1) Background: It is unclear what underpins the large global variations in the prevalence of fluoroquinolone resistance in Gram-negative bacteria. We tested the hypothesis that different intensities in the use of quinolones for food-animals play a role. (2) Methods: We used Spearman’s correlation t...

Descripción completa

Detalles Bibliográficos
Autor principal: Kenyon, Chris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8532820/
https://www.ncbi.nlm.nih.gov/pubmed/34680775
http://dx.doi.org/10.3390/antibiotics10101193
_version_ 1784587160857346048
author Kenyon, Chris
author_facet Kenyon, Chris
author_sort Kenyon, Chris
collection PubMed
description (1) Background: It is unclear what underpins the large global variations in the prevalence of fluoroquinolone resistance in Gram-negative bacteria. We tested the hypothesis that different intensities in the use of quinolones for food-animals play a role. (2) Methods: We used Spearman’s correlation to assess if the country-level prevalence of fluoroquinolone resistance in human infections with Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa was correlated with the use of quinolones for food producing animals. Linear regression was used to assess the relative contributions of country-level quinolone consumption for food-animals and humans on fluoroquinolone resistance in these 4 species. (3) Results: The prevalence of fluoroquinolone resistance in each species was positively associated with quinolone use for food-producing animals (E. coli [ρ = 0.55; p < 0.001], K. pneumoniae [ρ = 0.58; p < 0.001]; A. baumanii [ρ = 0.54; p = 0.004]; P. aeruginosa [ρ = 0.48; p = 0.008]). Linear regression revealed that both quinolone consumption in humans and food animals were independently associated with fluoroquinolone resistance in E. coli and A. baumanii. (4) Conclusions: Besides the prudent use of quinolones in humans, reducing quinolone use in food-producing animals may help retard the spread of fluoroquinolone resistance in various Gram-negative bacterial species.
format Online
Article
Text
id pubmed-8532820
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-85328202021-10-23 Positive Association between the Use of Quinolones in Food Animals and the Prevalence of Fluoroquinolone Resistance in E. coli and K. pneumoniae, A. baumannii and P. aeruginosa: A Global Ecological Analysis Kenyon, Chris Antibiotics (Basel) Article (1) Background: It is unclear what underpins the large global variations in the prevalence of fluoroquinolone resistance in Gram-negative bacteria. We tested the hypothesis that different intensities in the use of quinolones for food-animals play a role. (2) Methods: We used Spearman’s correlation to assess if the country-level prevalence of fluoroquinolone resistance in human infections with Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa was correlated with the use of quinolones for food producing animals. Linear regression was used to assess the relative contributions of country-level quinolone consumption for food-animals and humans on fluoroquinolone resistance in these 4 species. (3) Results: The prevalence of fluoroquinolone resistance in each species was positively associated with quinolone use for food-producing animals (E. coli [ρ = 0.55; p < 0.001], K. pneumoniae [ρ = 0.58; p < 0.001]; A. baumanii [ρ = 0.54; p = 0.004]; P. aeruginosa [ρ = 0.48; p = 0.008]). Linear regression revealed that both quinolone consumption in humans and food animals were independently associated with fluoroquinolone resistance in E. coli and A. baumanii. (4) Conclusions: Besides the prudent use of quinolones in humans, reducing quinolone use in food-producing animals may help retard the spread of fluoroquinolone resistance in various Gram-negative bacterial species. MDPI 2021-10-01 /pmc/articles/PMC8532820/ /pubmed/34680775 http://dx.doi.org/10.3390/antibiotics10101193 Text en © 2021 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kenyon, Chris
Positive Association between the Use of Quinolones in Food Animals and the Prevalence of Fluoroquinolone Resistance in E. coli and K. pneumoniae, A. baumannii and P. aeruginosa: A Global Ecological Analysis
title Positive Association between the Use of Quinolones in Food Animals and the Prevalence of Fluoroquinolone Resistance in E. coli and K. pneumoniae, A. baumannii and P. aeruginosa: A Global Ecological Analysis
title_full Positive Association between the Use of Quinolones in Food Animals and the Prevalence of Fluoroquinolone Resistance in E. coli and K. pneumoniae, A. baumannii and P. aeruginosa: A Global Ecological Analysis
title_fullStr Positive Association between the Use of Quinolones in Food Animals and the Prevalence of Fluoroquinolone Resistance in E. coli and K. pneumoniae, A. baumannii and P. aeruginosa: A Global Ecological Analysis
title_full_unstemmed Positive Association between the Use of Quinolones in Food Animals and the Prevalence of Fluoroquinolone Resistance in E. coli and K. pneumoniae, A. baumannii and P. aeruginosa: A Global Ecological Analysis
title_short Positive Association between the Use of Quinolones in Food Animals and the Prevalence of Fluoroquinolone Resistance in E. coli and K. pneumoniae, A. baumannii and P. aeruginosa: A Global Ecological Analysis
title_sort positive association between the use of quinolones in food animals and the prevalence of fluoroquinolone resistance in e. coli and k. pneumoniae, a. baumannii and p. aeruginosa: a global ecological analysis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8532820/
https://www.ncbi.nlm.nih.gov/pubmed/34680775
http://dx.doi.org/10.3390/antibiotics10101193
work_keys_str_mv AT kenyonchris positiveassociationbetweentheuseofquinolonesinfoodanimalsandtheprevalenceoffluoroquinoloneresistanceinecoliandkpneumoniaeabaumanniiandpaeruginosaaglobalecologicalanalysis