Cargando…
Treatment Efficacy Analysis in Acute Ischemic Stroke Patients Using In Silico Modeling Based on Machine Learning: A Proof-of-Principle
Interventional neuroradiology is characterized by engineering- and experience-driven device development with design improvements every few months. However, clinical validation of these new devices requires lengthy and expensive randomized controlled trials. This contribution proposes a machine learn...
Autores principales: | Winder, Anthony, Wilms, Matthias, Fiehler, Jens, Forkert, Nils D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8533087/ https://www.ncbi.nlm.nih.gov/pubmed/34680474 http://dx.doi.org/10.3390/biomedicines9101357 |
Ejemplares similares
-
Predicting the tissue outcome of acute ischemic stroke from acute 4D computed tomography perfusion imaging using temporal features and deep learning
por: Winder, Anthony J., et al.
Publicado: (2022) -
Machine Learning-Based Prediction of Brain Tissue Infarction in Patients With Acute Ischemic Stroke Treated With Theophylline as an Add-On to Thrombolytic Therapy: A Randomized Clinical Trial Subgroup Analysis
por: Modrau, Boris, et al.
Publicado: (2021) -
Technical considerations of multi-parametric tissue outcome prediction methods in acute ischemic stroke patients
por: Winder, Anthony J., et al.
Publicado: (2019) -
Multiclass Support Vector Machine-Based Lesion Mapping Predicts Functional Outcome in Ischemic Stroke Patients
por: Forkert, Nils Daniel, et al.
Publicado: (2015) -
Impact of Severe Extracranial ICA Stenosis on MRI Perfusion and Diffusion Parameters in Acute Ischemic Stroke
por: Kaesemann, Philipp, et al.
Publicado: (2014)