Cargando…
Predicting Cancer Drug Response In Vivo by Learning an Optimal Feature Selection of Tumour Molecular Profiles
(1) Background: Inter-tumour heterogeneity is one of cancer’s most fundamental features. Patient stratification based on drug response prediction is hence needed for effective anti-cancer therapy. However, single-gene markers of response are rare and/or may fail to achieve a significant impact in th...
Autores principales: | Nguyen, Linh C., Naulaerts, Stefan, Bruna, Alejandra, Ghislat, Ghita, Ballester, Pedro J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8533095/ https://www.ncbi.nlm.nih.gov/pubmed/34680436 http://dx.doi.org/10.3390/biomedicines9101319 |
Ejemplares similares
-
Interpretable Machine Learning Models to Predict the Resistance of Breast Cancer Patients to Doxorubicin from Their microRNA Profiles
por: Ogunleye, Adeolu Z., et al.
Publicado: (2022) -
Identification and Validation of Carbonic Anhydrase II as the First Target of the Anti-Inflammatory Drug Actarit
por: Ghislat, Ghita, et al.
Publicado: (2020) -
Precision and recall oncology: combining multiple gene mutations for improved identification of drug-sensitive tumours
por: Naulaerts, Stefan, et al.
Publicado: (2017) -
Concise Polygenic Models for Cancer-Specific Identification of Drug-Sensitive Tumors from Their Multi-Omics Profiles
por: Naulaerts, Stefan, et al.
Publicado: (2020) -
Predicting the Reliability of Drug-target Interaction Predictions with Maximum Coverage of Target Space
por: Peón, Antonio, et al.
Publicado: (2017)