Cargando…
mRNA Analysis of Frameshift Mutations with Stop Codon in the Last Exon: The Case of Hemoglobins Campania [α1 cod95 (−C)] and Sciacca [α1 cod109 (−C)]
An insertion or deletion of a nucleotide (nt) in the penultimate or the last exon can result in a frameshift and premature termination codon (PTC), giving rise to an unstable protein variant, showing a dominant phenotype. We described two α-globin mutants created by the deletion of a nucleotide in t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8533187/ https://www.ncbi.nlm.nih.gov/pubmed/34680508 http://dx.doi.org/10.3390/biomedicines9101390 |
_version_ | 1784587251075776512 |
---|---|
author | Cardiero, Giovanna Musollino, Gennaro Prezioso, Romeo Lacerra, Giuseppina |
author_facet | Cardiero, Giovanna Musollino, Gennaro Prezioso, Romeo Lacerra, Giuseppina |
author_sort | Cardiero, Giovanna |
collection | PubMed |
description | An insertion or deletion of a nucleotide (nt) in the penultimate or the last exon can result in a frameshift and premature termination codon (PTC), giving rise to an unstable protein variant, showing a dominant phenotype. We described two α-globin mutants created by the deletion of a nucleotide in the penultimate or the last exon of the α1-globin gene: the Hb Campania or α1 cod95 (−C), causing a frameshift resulting in a PTC at codon 102, and the Hb Sciacca or α1 cod109 (−C), causing a frameshift and formation of a PTC at codon 133. The carriers showed α-thalassemia alterations (mild microcytosis with normal Hb A2) and lacked hemoglobin variants. The 3D model indicated the α-chain variants’ instability, due to the severe structural alterations with impairment of the chaperone alpha-hemoglobin stabilizing protein (AHSP) interaction. The qualitative and semiquantitative analyses of the α1mRNA from the reticulocytes of carriers highlighted a reduction in the variant cDNAs that constituted 34% (Hb Campania) and 15% (Hb Sciacca) of the total α1-globin cDNA, respectively. We developed a workflow for the in silico analysis of mechanisms triggering no-go decay, and its results suggested that the reduction in the variant mRNA was likely due to no-go decay caused by the presence of a rare triplet, and, in the case of Hb Sciacca, also by the mRNA’s secondary structure variation. It would be interesting to correlate the phenotype with the quantity of other frameshift mRNA variants, but very few data concerning α- and β-globin variants are available. |
format | Online Article Text |
id | pubmed-8533187 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85331872021-10-23 mRNA Analysis of Frameshift Mutations with Stop Codon in the Last Exon: The Case of Hemoglobins Campania [α1 cod95 (−C)] and Sciacca [α1 cod109 (−C)] Cardiero, Giovanna Musollino, Gennaro Prezioso, Romeo Lacerra, Giuseppina Biomedicines Article An insertion or deletion of a nucleotide (nt) in the penultimate or the last exon can result in a frameshift and premature termination codon (PTC), giving rise to an unstable protein variant, showing a dominant phenotype. We described two α-globin mutants created by the deletion of a nucleotide in the penultimate or the last exon of the α1-globin gene: the Hb Campania or α1 cod95 (−C), causing a frameshift resulting in a PTC at codon 102, and the Hb Sciacca or α1 cod109 (−C), causing a frameshift and formation of a PTC at codon 133. The carriers showed α-thalassemia alterations (mild microcytosis with normal Hb A2) and lacked hemoglobin variants. The 3D model indicated the α-chain variants’ instability, due to the severe structural alterations with impairment of the chaperone alpha-hemoglobin stabilizing protein (AHSP) interaction. The qualitative and semiquantitative analyses of the α1mRNA from the reticulocytes of carriers highlighted a reduction in the variant cDNAs that constituted 34% (Hb Campania) and 15% (Hb Sciacca) of the total α1-globin cDNA, respectively. We developed a workflow for the in silico analysis of mechanisms triggering no-go decay, and its results suggested that the reduction in the variant mRNA was likely due to no-go decay caused by the presence of a rare triplet, and, in the case of Hb Sciacca, also by the mRNA’s secondary structure variation. It would be interesting to correlate the phenotype with the quantity of other frameshift mRNA variants, but very few data concerning α- and β-globin variants are available. MDPI 2021-10-04 /pmc/articles/PMC8533187/ /pubmed/34680508 http://dx.doi.org/10.3390/biomedicines9101390 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Cardiero, Giovanna Musollino, Gennaro Prezioso, Romeo Lacerra, Giuseppina mRNA Analysis of Frameshift Mutations with Stop Codon in the Last Exon: The Case of Hemoglobins Campania [α1 cod95 (−C)] and Sciacca [α1 cod109 (−C)] |
title | mRNA Analysis of Frameshift Mutations with Stop Codon in the Last Exon: The Case of Hemoglobins Campania [α1 cod95 (−C)] and Sciacca [α1 cod109 (−C)] |
title_full | mRNA Analysis of Frameshift Mutations with Stop Codon in the Last Exon: The Case of Hemoglobins Campania [α1 cod95 (−C)] and Sciacca [α1 cod109 (−C)] |
title_fullStr | mRNA Analysis of Frameshift Mutations with Stop Codon in the Last Exon: The Case of Hemoglobins Campania [α1 cod95 (−C)] and Sciacca [α1 cod109 (−C)] |
title_full_unstemmed | mRNA Analysis of Frameshift Mutations with Stop Codon in the Last Exon: The Case of Hemoglobins Campania [α1 cod95 (−C)] and Sciacca [α1 cod109 (−C)] |
title_short | mRNA Analysis of Frameshift Mutations with Stop Codon in the Last Exon: The Case of Hemoglobins Campania [α1 cod95 (−C)] and Sciacca [α1 cod109 (−C)] |
title_sort | mrna analysis of frameshift mutations with stop codon in the last exon: the case of hemoglobins campania [α1 cod95 (−c)] and sciacca [α1 cod109 (−c)] |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8533187/ https://www.ncbi.nlm.nih.gov/pubmed/34680508 http://dx.doi.org/10.3390/biomedicines9101390 |
work_keys_str_mv | AT cardierogiovanna mrnaanalysisofframeshiftmutationswithstopcodoninthelastexonthecaseofhemoglobinscampaniaa1cod95candsciaccaa1cod109c AT musollinogennaro mrnaanalysisofframeshiftmutationswithstopcodoninthelastexonthecaseofhemoglobinscampaniaa1cod95candsciaccaa1cod109c AT preziosoromeo mrnaanalysisofframeshiftmutationswithstopcodoninthelastexonthecaseofhemoglobinscampaniaa1cod95candsciaccaa1cod109c AT lacerragiuseppina mrnaanalysisofframeshiftmutationswithstopcodoninthelastexonthecaseofhemoglobinscampaniaa1cod95candsciaccaa1cod109c |