Cargando…
Machine Learning Algorithms to Predict Mortality of Neonates on Mechanical Intubation for Respiratory Failure
Background: Early identification of critically ill neonates with poor outcomes can optimize therapeutic strategies. We aimed to examine whether machine learning (ML) methods can improve mortality prediction for neonatal intensive care unit (NICU) patients on intubation for respiratory failure. Metho...
Autores principales: | Hsu, Jen-Fu, Yang, Chi, Lin, Chun-Yuan, Chu, Shih-Ming, Huang, Hsuan-Rong, Chiang, Ming-Chou, Wang, Hsiao-Chin, Liao, Wei-Chao, Fu, Rei-Huei, Tsai, Ming-Horng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8533201/ https://www.ncbi.nlm.nih.gov/pubmed/34680497 http://dx.doi.org/10.3390/biomedicines9101377 |
Ejemplares similares
-
Multidrug-Resistant Healthcare-Associated Infections in Neonates with Severe Respiratory Failure and the Impacts of Inappropriate Initial Antibiotic Therap
por: Hsu, Jen-Fu, et al.
Publicado: (2021) -
Clinical characteristics and outcomes of neonates with polymicrobial ventilator-associated pneumonia in the intensive care unit
por: Wang, Hsiao-Chin, et al.
Publicado: (2021) -
Impacts of Multidrug-Resistant Pathogens and Inappropriate Initial Antibiotic Therapy on the Outcomes of Neonates with Ventilator-Associated Pneumonia
por: Wang, Hsiao-Chin, et al.
Publicado: (2020) -
The Off-Label Use of Inhaled Nitric Oxide as a Rescue Therapy in Neonates with Refractory Hypoxemic Respiratory Failure: Therapeutic Response and Risk Factors for Mortality
por: Hsiao, Hsiu-Feng, et al.
Publicado: (2019) -
Machine Learning Approaches to Predict In-Hospital Mortality among Neonates with Clinically Suspected Sepsis in the Neonatal Intensive Care Unit
por: Hsu, Jen-Fu, et al.
Publicado: (2021)