Cargando…
Degradation of Poly(ε-caprolactone) by a Thermophilic Community and Brevibacillus thermoruber Strain 7 Isolated from Bulgarian Hot Spring
The continual plastic accumulation in the environment and the hazardous consequences determine the interest in thermophiles as possible effective plastic degraders, due to their unique metabolic mechanisms and change of plastic properties at elevated temperatures. PCL is one of major biodegradable p...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8533204/ https://www.ncbi.nlm.nih.gov/pubmed/34680121 http://dx.doi.org/10.3390/biom11101488 |
_version_ | 1784587256316559360 |
---|---|
author | Atanasova, Nikolina Paunova-Krasteva, Tsvetelina Stoitsova, Stoyanka Radchenkova, Nadja Boyadzhieva, Ivanka Petrov, Kaloyan Kambourova, Margarita |
author_facet | Atanasova, Nikolina Paunova-Krasteva, Tsvetelina Stoitsova, Stoyanka Radchenkova, Nadja Boyadzhieva, Ivanka Petrov, Kaloyan Kambourova, Margarita |
author_sort | Atanasova, Nikolina |
collection | PubMed |
description | The continual plastic accumulation in the environment and the hazardous consequences determine the interest in thermophiles as possible effective plastic degraders, due to their unique metabolic mechanisms and change of plastic properties at elevated temperatures. PCL is one of major biodegradable plastics with promising application to replace existing non-biodegradable polymers. Metagenomic analysis of the phylogenetic diversity in plastic contaminated area of Marikostinovo hot spring, Bulgaria revealed a higher number taxonomic groups (11) in the sample enriched without plastic (Marikostinovo community, control sample, MKC-C) than in that enriched in the presence of poly-ε-caprolactone (PCL) (MKC-P), (7). A strong domination of the phylum Proteobacteria was observed for MKC-C, while the dominant phyla in MKC-P were Deinococcus-Thermus and Firmicutes. Among the strains isolated from MKC-P, the highest esterase activity was registered for Brevibacillus thermoruber strain 7 at 55 °C. Its co-cultivation with another isolate resulted in ~10% increase in enzyme activity. During a 28-day biodegradation process, a decrease in PCL molecular weight and weight loss were established resulting in 100% degradation by MKC-P and 63.6% by strain 7. PCL degradation intermediate profiles for MKC-P and pure strain were similar. Broken plastic pieces from PCL surface and formation of a biofilm by MKC-P were observed by SEM, while the pure strain caused significant deformation of PCL probes without biofilm formation. |
format | Online Article Text |
id | pubmed-8533204 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85332042021-10-23 Degradation of Poly(ε-caprolactone) by a Thermophilic Community and Brevibacillus thermoruber Strain 7 Isolated from Bulgarian Hot Spring Atanasova, Nikolina Paunova-Krasteva, Tsvetelina Stoitsova, Stoyanka Radchenkova, Nadja Boyadzhieva, Ivanka Petrov, Kaloyan Kambourova, Margarita Biomolecules Article The continual plastic accumulation in the environment and the hazardous consequences determine the interest in thermophiles as possible effective plastic degraders, due to their unique metabolic mechanisms and change of plastic properties at elevated temperatures. PCL is one of major biodegradable plastics with promising application to replace existing non-biodegradable polymers. Metagenomic analysis of the phylogenetic diversity in plastic contaminated area of Marikostinovo hot spring, Bulgaria revealed a higher number taxonomic groups (11) in the sample enriched without plastic (Marikostinovo community, control sample, MKC-C) than in that enriched in the presence of poly-ε-caprolactone (PCL) (MKC-P), (7). A strong domination of the phylum Proteobacteria was observed for MKC-C, while the dominant phyla in MKC-P were Deinococcus-Thermus and Firmicutes. Among the strains isolated from MKC-P, the highest esterase activity was registered for Brevibacillus thermoruber strain 7 at 55 °C. Its co-cultivation with another isolate resulted in ~10% increase in enzyme activity. During a 28-day biodegradation process, a decrease in PCL molecular weight and weight loss were established resulting in 100% degradation by MKC-P and 63.6% by strain 7. PCL degradation intermediate profiles for MKC-P and pure strain were similar. Broken plastic pieces from PCL surface and formation of a biofilm by MKC-P were observed by SEM, while the pure strain caused significant deformation of PCL probes without biofilm formation. MDPI 2021-10-09 /pmc/articles/PMC8533204/ /pubmed/34680121 http://dx.doi.org/10.3390/biom11101488 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Atanasova, Nikolina Paunova-Krasteva, Tsvetelina Stoitsova, Stoyanka Radchenkova, Nadja Boyadzhieva, Ivanka Petrov, Kaloyan Kambourova, Margarita Degradation of Poly(ε-caprolactone) by a Thermophilic Community and Brevibacillus thermoruber Strain 7 Isolated from Bulgarian Hot Spring |
title | Degradation of Poly(ε-caprolactone) by a Thermophilic Community and Brevibacillus thermoruber Strain 7 Isolated from Bulgarian Hot Spring |
title_full | Degradation of Poly(ε-caprolactone) by a Thermophilic Community and Brevibacillus thermoruber Strain 7 Isolated from Bulgarian Hot Spring |
title_fullStr | Degradation of Poly(ε-caprolactone) by a Thermophilic Community and Brevibacillus thermoruber Strain 7 Isolated from Bulgarian Hot Spring |
title_full_unstemmed | Degradation of Poly(ε-caprolactone) by a Thermophilic Community and Brevibacillus thermoruber Strain 7 Isolated from Bulgarian Hot Spring |
title_short | Degradation of Poly(ε-caprolactone) by a Thermophilic Community and Brevibacillus thermoruber Strain 7 Isolated from Bulgarian Hot Spring |
title_sort | degradation of poly(ε-caprolactone) by a thermophilic community and brevibacillus thermoruber strain 7 isolated from bulgarian hot spring |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8533204/ https://www.ncbi.nlm.nih.gov/pubmed/34680121 http://dx.doi.org/10.3390/biom11101488 |
work_keys_str_mv | AT atanasovanikolina degradationofpolyecaprolactonebyathermophiliccommunityandbrevibacillusthermoruberstrain7isolatedfrombulgarianhotspring AT paunovakrastevatsvetelina degradationofpolyecaprolactonebyathermophiliccommunityandbrevibacillusthermoruberstrain7isolatedfrombulgarianhotspring AT stoitsovastoyanka degradationofpolyecaprolactonebyathermophiliccommunityandbrevibacillusthermoruberstrain7isolatedfrombulgarianhotspring AT radchenkovanadja degradationofpolyecaprolactonebyathermophiliccommunityandbrevibacillusthermoruberstrain7isolatedfrombulgarianhotspring AT boyadzhievaivanka degradationofpolyecaprolactonebyathermophiliccommunityandbrevibacillusthermoruberstrain7isolatedfrombulgarianhotspring AT petrovkaloyan degradationofpolyecaprolactonebyathermophiliccommunityandbrevibacillusthermoruberstrain7isolatedfrombulgarianhotspring AT kambourovamargarita degradationofpolyecaprolactonebyathermophiliccommunityandbrevibacillusthermoruberstrain7isolatedfrombulgarianhotspring |