Cargando…

Can Symbiotic Bacteria (Xenorhabdus and Photorhabdus) Be More Efficient than Their Entomopathogenic Nematodes against Pieris rapae and Pentodon algerinus Larvae?

SIMPLE SUMMARY: Food security is the people’s main concern, and agricultural crops play a significant role in ensuring it. Agricultural pests, on the other hand, are regarded one of the most serious threats to cause a significant problem for food security. Entomopathogenic nematodes of the genera He...

Descripción completa

Detalles Bibliográficos
Autores principales: Elbrense, Hanaa, Elmasry, Amr M. A., Seleiman, Mahmoud F., AL-Harbi, Mohammad S., Abd El-Raheem, Ahmed M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8533234/
https://www.ncbi.nlm.nih.gov/pubmed/34681098
http://dx.doi.org/10.3390/biology10100999
_version_ 1784587263532859392
author Elbrense, Hanaa
Elmasry, Amr M. A.
Seleiman, Mahmoud F.
AL-Harbi, Mohammad S.
Abd El-Raheem, Ahmed M.
author_facet Elbrense, Hanaa
Elmasry, Amr M. A.
Seleiman, Mahmoud F.
AL-Harbi, Mohammad S.
Abd El-Raheem, Ahmed M.
author_sort Elbrense, Hanaa
collection PubMed
description SIMPLE SUMMARY: Food security is the people’s main concern, and agricultural crops play a significant role in ensuring it. Agricultural pests, on the other hand, are regarded one of the most serious threats to cause a significant problem for food security. Entomopathogenic nematodes of the genera Herterorhabditids and Sterinernematids fulfil the fundamental requirements of perfect bio-control agents; however, their efficacy mostly dependent on their symbiotic bacteria. As a result, this study aimed to investigate the ability of the isolated symbiotic bacteria (Photorhabdus and Xenorhabdus) to control Pieris rapae and Pentodon algerinus larvae in comparison with their own nematodes, Heterorhabditis bacteriophora and Steinernema riobravis, respectively. The results showed that both nematode species and their symbiotic bacteria were able to suppress both insect species. However, both bacterial genera were more efficient than the investigated nematode species against P. rapae, although nematodes were superior against P. algerinus. Gas chromatography–mass spectrophotometry of Xenorhabdus sp. and Photorhabdus sp. identified the key components with the insecticidal properties. The two bacteria genera were proven to be safe and had no significant effect on normal WI-38 human cells. In conclusion, the symbiotic bacteria can be employed safely and effectively against the tested insects independently on their own entomopathogenic nematodes. ABSTRACT: Pieris rapae and Pentodon algerinus are considered a global threat to agricultural crops and food security; hence, their control is a critical issue. Heterorhabditid and Steinernematid nematodes, along with their symbiotic bacteria, can achieve the optimal biocontrol agent criterion. Therefore, this study aimed to evaluate the efficacy of Heterorhabditis bacteriophora, Steinernema riobravis, and their symbiotic bacteria (Xenorhabdus and Photorhabdus) against P. rapae and P. algerinus larvae. The virulence of entomopathogenic nematodes (EPNs) was determined at different infective juvenile concentrations and exposure times, while the symbiotic bacteria were applied at the concentration of 3 × 10(7) colony-forming units (CFU)/mL at different exposure times. Gas chromatography–mass spectrophotometry (GC-MS) analysis and the cytotoxic effect of Photorhabdus sp. and Xenorhabdus sp. were determined. The results indicated that H. bacteriophora, S. riobravis, and their symbiotic bacteria significantly (p ≤ 0.001) induced mortality in both insect species. However, H. bacteriophora and its symbiont, Photorhabdus sp., were more virulent. Moreover, the data clarified that both symbiotic bacteria outperformed EPNs against P. rapae but the opposite was true for P. algerinus. GC-MS analysis revealed the main active compounds that have insecticidal activity. However, the results revealed that there was no significant cytotoxic effect. In conclusion, H. bacteriophora, S. riobravis, and their symbiotic bacteria can be an optimal option for bio-controlling both insect species. Furthermore, both symbiotic bacteria can be utilized independently on EPNs for the management of both pests, and, hence, they can be safely incorporated into biocontrol programs and tested against other insect pests.
format Online
Article
Text
id pubmed-8533234
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-85332342021-10-23 Can Symbiotic Bacteria (Xenorhabdus and Photorhabdus) Be More Efficient than Their Entomopathogenic Nematodes against Pieris rapae and Pentodon algerinus Larvae? Elbrense, Hanaa Elmasry, Amr M. A. Seleiman, Mahmoud F. AL-Harbi, Mohammad S. Abd El-Raheem, Ahmed M. Biology (Basel) Article SIMPLE SUMMARY: Food security is the people’s main concern, and agricultural crops play a significant role in ensuring it. Agricultural pests, on the other hand, are regarded one of the most serious threats to cause a significant problem for food security. Entomopathogenic nematodes of the genera Herterorhabditids and Sterinernematids fulfil the fundamental requirements of perfect bio-control agents; however, their efficacy mostly dependent on their symbiotic bacteria. As a result, this study aimed to investigate the ability of the isolated symbiotic bacteria (Photorhabdus and Xenorhabdus) to control Pieris rapae and Pentodon algerinus larvae in comparison with their own nematodes, Heterorhabditis bacteriophora and Steinernema riobravis, respectively. The results showed that both nematode species and their symbiotic bacteria were able to suppress both insect species. However, both bacterial genera were more efficient than the investigated nematode species against P. rapae, although nematodes were superior against P. algerinus. Gas chromatography–mass spectrophotometry of Xenorhabdus sp. and Photorhabdus sp. identified the key components with the insecticidal properties. The two bacteria genera were proven to be safe and had no significant effect on normal WI-38 human cells. In conclusion, the symbiotic bacteria can be employed safely and effectively against the tested insects independently on their own entomopathogenic nematodes. ABSTRACT: Pieris rapae and Pentodon algerinus are considered a global threat to agricultural crops and food security; hence, their control is a critical issue. Heterorhabditid and Steinernematid nematodes, along with their symbiotic bacteria, can achieve the optimal biocontrol agent criterion. Therefore, this study aimed to evaluate the efficacy of Heterorhabditis bacteriophora, Steinernema riobravis, and their symbiotic bacteria (Xenorhabdus and Photorhabdus) against P. rapae and P. algerinus larvae. The virulence of entomopathogenic nematodes (EPNs) was determined at different infective juvenile concentrations and exposure times, while the symbiotic bacteria were applied at the concentration of 3 × 10(7) colony-forming units (CFU)/mL at different exposure times. Gas chromatography–mass spectrophotometry (GC-MS) analysis and the cytotoxic effect of Photorhabdus sp. and Xenorhabdus sp. were determined. The results indicated that H. bacteriophora, S. riobravis, and their symbiotic bacteria significantly (p ≤ 0.001) induced mortality in both insect species. However, H. bacteriophora and its symbiont, Photorhabdus sp., were more virulent. Moreover, the data clarified that both symbiotic bacteria outperformed EPNs against P. rapae but the opposite was true for P. algerinus. GC-MS analysis revealed the main active compounds that have insecticidal activity. However, the results revealed that there was no significant cytotoxic effect. In conclusion, H. bacteriophora, S. riobravis, and their symbiotic bacteria can be an optimal option for bio-controlling both insect species. Furthermore, both symbiotic bacteria can be utilized independently on EPNs for the management of both pests, and, hence, they can be safely incorporated into biocontrol programs and tested against other insect pests. MDPI 2021-10-04 /pmc/articles/PMC8533234/ /pubmed/34681098 http://dx.doi.org/10.3390/biology10100999 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Elbrense, Hanaa
Elmasry, Amr M. A.
Seleiman, Mahmoud F.
AL-Harbi, Mohammad S.
Abd El-Raheem, Ahmed M.
Can Symbiotic Bacteria (Xenorhabdus and Photorhabdus) Be More Efficient than Their Entomopathogenic Nematodes against Pieris rapae and Pentodon algerinus Larvae?
title Can Symbiotic Bacteria (Xenorhabdus and Photorhabdus) Be More Efficient than Their Entomopathogenic Nematodes against Pieris rapae and Pentodon algerinus Larvae?
title_full Can Symbiotic Bacteria (Xenorhabdus and Photorhabdus) Be More Efficient than Their Entomopathogenic Nematodes against Pieris rapae and Pentodon algerinus Larvae?
title_fullStr Can Symbiotic Bacteria (Xenorhabdus and Photorhabdus) Be More Efficient than Their Entomopathogenic Nematodes against Pieris rapae and Pentodon algerinus Larvae?
title_full_unstemmed Can Symbiotic Bacteria (Xenorhabdus and Photorhabdus) Be More Efficient than Their Entomopathogenic Nematodes against Pieris rapae and Pentodon algerinus Larvae?
title_short Can Symbiotic Bacteria (Xenorhabdus and Photorhabdus) Be More Efficient than Their Entomopathogenic Nematodes against Pieris rapae and Pentodon algerinus Larvae?
title_sort can symbiotic bacteria (xenorhabdus and photorhabdus) be more efficient than their entomopathogenic nematodes against pieris rapae and pentodon algerinus larvae?
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8533234/
https://www.ncbi.nlm.nih.gov/pubmed/34681098
http://dx.doi.org/10.3390/biology10100999
work_keys_str_mv AT elbrensehanaa cansymbioticbacteriaxenorhabdusandphotorhabdusbemoreefficientthantheirentomopathogenicnematodesagainstpierisrapaeandpentodonalgerinuslarvae
AT elmasryamrma cansymbioticbacteriaxenorhabdusandphotorhabdusbemoreefficientthantheirentomopathogenicnematodesagainstpierisrapaeandpentodonalgerinuslarvae
AT seleimanmahmoudf cansymbioticbacteriaxenorhabdusandphotorhabdusbemoreefficientthantheirentomopathogenicnematodesagainstpierisrapaeandpentodonalgerinuslarvae
AT alharbimohammads cansymbioticbacteriaxenorhabdusandphotorhabdusbemoreefficientthantheirentomopathogenicnematodesagainstpierisrapaeandpentodonalgerinuslarvae
AT abdelraheemahmedm cansymbioticbacteriaxenorhabdusandphotorhabdusbemoreefficientthantheirentomopathogenicnematodesagainstpierisrapaeandpentodonalgerinuslarvae