Cargando…
Artificial Intelligence Identifies an Urgent Need for Peripheral Vascular Intervention by Multiplexing Standard Clinical Parameters
Background: Peripheral artery disease (PAD) is a significant burden, particularly among patients with severe disease requiring invasive treatment. We applied a general Machine Learning (ML) workflow and investigated if a multi-dimensional marker set of standard clinical parameters can identify patie...
Autores principales: | Sonnenschein, Kristina, Stojanović, Stevan D., Dickel, Nicholas, Fiedler, Jan, Bauersachs, Johann, Thum, Thomas, Kunz, Meik, Tongers, Jörn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8533252/ https://www.ncbi.nlm.nih.gov/pubmed/34680572 http://dx.doi.org/10.3390/biomedicines9101456 |
Ejemplares similares
-
Inflammatory Drivers of Cardiovascular Disease: Molecular Characterization of Senescent Coronary Vascular Smooth Muscle Cells
por: Stojanović, Stevan D., et al.
Publicado: (2020) -
Senescence-induced inflammation: an important player and key therapeutic target in atherosclerosis
por: Stojanović, Stevan D, et al.
Publicado: (2020) -
Comprehensive Bioinformatics Identifies Key microRNA Players in ATG7-Deficient Lung Fibroblasts
por: Stojanović, Stevan D., et al.
Publicado: (2020) -
Therapeutic modulation of RNA-binding protein Rbm38 facilitates re-endothelialization after arterial injury
por: Sonnenschein, Kristina, et al.
Publicado: (2019) -
Deciphering Pro-angiogenic Transcription Factor Profiles in Hypoxic Human Endothelial Cells by Combined Bioinformatics and in vitro Modeling
por: Schmidt, Arne, et al.
Publicado: (2022)