Cargando…
Prevalence of Hyperhomocysteinemia in China: An Updated Meta-Analysis
SIMPLE SUMMARY: Hyperhomocysteinemia has been defined as an elevated serum concentration of homocysteine exceeding 15 μmol/L and has been proven to play an important role in the pathogenesis of cerebrovascular disease. The prevalence of hyperhomocysteinemia in China has been outlined in a previous m...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8533293/ https://www.ncbi.nlm.nih.gov/pubmed/34681058 http://dx.doi.org/10.3390/biology10100959 |
Sumario: | SIMPLE SUMMARY: Hyperhomocysteinemia has been defined as an elevated serum concentration of homocysteine exceeding 15 μmol/L and has been proven to play an important role in the pathogenesis of cerebrovascular disease. The prevalence of hyperhomocysteinemia in China has been outlined in a previous meta-analysis. Considering the key role of homocysteine in the process of vascular injury, more studies have been conducted to prevent hyperhomocysteinemia by nutritional supplements such as folic acid or other treatments. Additionally, studies have shown that the prevalence of hyperhomocysteinemia increases over time; therefore, it was necessary to provide an update from the previous meta-analysis on homocysteine status in China. This was needed to understand the prevalence, the trend in changes over time, and its determinants. The results highlight that the prevalence of hyperhomocysteinemia is increasing in China, especially among the elderly, men, and residents in the north, inland areas, and rural areas of China. ABSTRACT: We conducted a meta-analysis to systematically assess the prevalence of hyperhomocysteinemia (HHcy) in China, its change over time, and its determinants. Literature searches were conducted using English databases (PubMed, Embase, and Web of Science) and Chinese databases (CNKI, CBM, VIP, and Wanfang). The time ranges were from Jan 2014 to Mar 2021 in China. We adopted the random effects model to estimate the pooled positive rates of HHcy and corresponding 95% confidence intervals (95% CI). To find the sources of heterogeneity, we performed subgroup analysis and meta-regression. A total of 29 related articles were identified involving 338,660 participants with 128,147 HHcy cases. The estimated prevalence of HHcy in China was 37.2% (95% CI: 32.6–41.8%, I(2) = 99.8%, p for heterogeneity < 0.001). The trend of HHcy prevalence was gradually upward over time, with increases during 2015–2016 (comparison to 2013–2014, p < 0.001), but steady between 2015–2016 and 2017–2018. Subgroup analysis showed that the prevalence was higher in the elderly over 55 years old, males, and residents in the north, inland, and rural China (for each comparison, p < 0.001). Meta-regression analysis revealed that age and area of study contributed to 42.3% of the heterogeneity between studies. The current meta-analysis provides strong evidence that the prevalence of HHcy is increasing in China, and varies substantially across different ages, genders, and geographic distribution. Accordingly, high-risk population groups should be focused on, and public health policies and strategies should be carried out to prevent and control HHcy in China. |
---|