Cargando…
Bioactive Metabolites Produced by Cyanobacteria for Growth Adaptation and Their Pharmacological Properties
SIMPLE SUMMARY: Cyanobacteria are known as oxygenic microorganisms are able to release oxygen as a byproduct during photosynthesis. Rapidly changing environmental conditions require cyanobacteria to have dynamic adaptation strategies. They synthesize bioactive metabolites that are responsible for pr...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8533319/ https://www.ncbi.nlm.nih.gov/pubmed/34681158 http://dx.doi.org/10.3390/biology10101061 |
Sumario: | SIMPLE SUMMARY: Cyanobacteria are known as oxygenic microorganisms are able to release oxygen as a byproduct during photosynthesis. Rapidly changing environmental conditions require cyanobacteria to have dynamic adaptation strategies. They synthesize bioactive metabolites that are responsible for protection against harmful environmental conditions and to colonize in various habitats. This review focuses on the roles of bioactive metabolites for cyanobacterial survival and also discusses the bioactivities of these compounds for the treatment of numerous diseases. ABSTRACT: Cyanobacteria are the most abundant oxygenic photosynthetic organisms inhabiting various ecosystems on earth. As with all other photosynthetic organisms, cyanobacteria release oxygen as a byproduct during photosynthesis. In fact, some cyanobacterial species are involved in the global nitrogen cycles by fixing atmospheric nitrogen. Environmental factors influence the dynamic, physiological characteristics, and metabolic profiles of cyanobacteria, which results in their great adaptation ability to survive in diverse ecosystems. The evolution of these primitive bacteria resulted from the unique settings of photosynthetic machineries and the production of bioactive compounds. Specifically, bioactive compounds play roles as regulators to provide protection against extrinsic factors and act as intracellular signaling molecules to promote colonization. In addition to the roles of bioactive metabolites as indole alkaloids, terpenoids, mycosporine-like amino acids, non-ribosomal peptides, polyketides, ribosomal peptides, phenolic acid, flavonoids, vitamins, and antimetabolites for cyanobacterial survival in numerous habitats, which is the focus of this review, the bioactivities of these compounds for the treatment of various diseases are also discussed. |
---|