Cargando…

Unprecedented Monoterpenoid Polyprenylated Acylphloroglucinols with a Rare 6/6/5/4 Tetracyclic Core, Enhanced MCF-7 Cells’ Sensitivity to Camptothecin by Inhibiting the DNA Damage Response

(±)-Hypersines A–C (1–3), the three pairs of enantiomerically pure monoterpenoid polyprenylated acylphloroglucinols with an unprecedented 6/6/5/4 fused ring system, were isolated from Hypericum elodeoides. Their structures, including absolute configurations, were elucidated by comprehensive spectros...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Xiang-Zhong, Zhou, Mi, Du, Chun-Chun, Zhu, Hong-Hong, Lu, Xi, He, Shou-Lun, Wang, Guang-Hui, Lin, Ting, Tian, Wen-Jing, Chen, Hai-Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8533472/
https://www.ncbi.nlm.nih.gov/pubmed/34680589
http://dx.doi.org/10.3390/biomedicines9101473
Descripción
Sumario:(±)-Hypersines A–C (1–3), the three pairs of enantiomerically pure monoterpenoid polyprenylated acylphloroglucinols with an unprecedented 6/6/5/4 fused ring system, were isolated from Hypericum elodeoides. Their structures, including absolute configurations, were elucidated by comprehensive spectroscopic data, single-crystal X-ray diffraction, and quantum chemical calculations. The plausible, biosynthetic pathway of 1–3 was proposed. Moreover, the bioactivity evaluation indicated that 1a might be a novel DNA damage response inhibitor, and could enhance MCF-7 cell sensitivity to the anticancer agent, camptothecin.