Cargando…

Effects of Sex and 17 β-Estradiol on Cardiac Fibroblast Morphology and Signaling Activities In Vitro

Several studies have demonstrated estrogen’s cardioprotective abilities in decreasing the fibrotic response of cardiac fibroblasts (CFs). However, the majority of these studies are not sex-specific, and those at the cellular level utilize tissue culture plastic, a substrate with a much higher stiffn...

Descripción completa

Detalles Bibliográficos
Autores principales: Watts, Kelsey, Richardson, William J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8533711/
https://www.ncbi.nlm.nih.gov/pubmed/34685546
http://dx.doi.org/10.3390/cells10102564
_version_ 1784587379344932864
author Watts, Kelsey
Richardson, William J.
author_facet Watts, Kelsey
Richardson, William J.
author_sort Watts, Kelsey
collection PubMed
description Several studies have demonstrated estrogen’s cardioprotective abilities in decreasing the fibrotic response of cardiac fibroblasts (CFs). However, the majority of these studies are not sex-specific, and those at the cellular level utilize tissue culture plastic, a substrate with a much higher stiffness than physiological conditions. Understanding the intrinsic differences between male and female CFs under more physiologically “healthy” conditions will help to elucidate the divergences in their complex signaling networks. We aimed to do this by conducting a sex-disaggregated analysis of changes in cellular morphology and relative levels of profibrotic signaling proteins in CFs cultured on 8 kPa stiffness plates with and without 17 β-estradiol (E2). Cyclic immunofluorescent analysis indicated that there was a negligible change in cellular morphology due to sex and E2 treatment and that the differences between male and female CFs occur at a biochemical rather than structural level. Several proteins corresponding to profibrotic activity had various sex-specific responses with and without E2 treatment. Single-cell correlation analysis exhibited varied protein–protein interaction across experimental conditions. These findings demonstrate the need for further research into the dimorphisms of male and female CFs to develop better tailored sex-informed prevention and treatment interventions of cardiac fibrosis.
format Online
Article
Text
id pubmed-8533711
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-85337112021-10-23 Effects of Sex and 17 β-Estradiol on Cardiac Fibroblast Morphology and Signaling Activities In Vitro Watts, Kelsey Richardson, William J. Cells Article Several studies have demonstrated estrogen’s cardioprotective abilities in decreasing the fibrotic response of cardiac fibroblasts (CFs). However, the majority of these studies are not sex-specific, and those at the cellular level utilize tissue culture plastic, a substrate with a much higher stiffness than physiological conditions. Understanding the intrinsic differences between male and female CFs under more physiologically “healthy” conditions will help to elucidate the divergences in their complex signaling networks. We aimed to do this by conducting a sex-disaggregated analysis of changes in cellular morphology and relative levels of profibrotic signaling proteins in CFs cultured on 8 kPa stiffness plates with and without 17 β-estradiol (E2). Cyclic immunofluorescent analysis indicated that there was a negligible change in cellular morphology due to sex and E2 treatment and that the differences between male and female CFs occur at a biochemical rather than structural level. Several proteins corresponding to profibrotic activity had various sex-specific responses with and without E2 treatment. Single-cell correlation analysis exhibited varied protein–protein interaction across experimental conditions. These findings demonstrate the need for further research into the dimorphisms of male and female CFs to develop better tailored sex-informed prevention and treatment interventions of cardiac fibrosis. MDPI 2021-09-28 /pmc/articles/PMC8533711/ /pubmed/34685546 http://dx.doi.org/10.3390/cells10102564 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Watts, Kelsey
Richardson, William J.
Effects of Sex and 17 β-Estradiol on Cardiac Fibroblast Morphology and Signaling Activities In Vitro
title Effects of Sex and 17 β-Estradiol on Cardiac Fibroblast Morphology and Signaling Activities In Vitro
title_full Effects of Sex and 17 β-Estradiol on Cardiac Fibroblast Morphology and Signaling Activities In Vitro
title_fullStr Effects of Sex and 17 β-Estradiol on Cardiac Fibroblast Morphology and Signaling Activities In Vitro
title_full_unstemmed Effects of Sex and 17 β-Estradiol on Cardiac Fibroblast Morphology and Signaling Activities In Vitro
title_short Effects of Sex and 17 β-Estradiol on Cardiac Fibroblast Morphology and Signaling Activities In Vitro
title_sort effects of sex and 17 β-estradiol on cardiac fibroblast morphology and signaling activities in vitro
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8533711/
https://www.ncbi.nlm.nih.gov/pubmed/34685546
http://dx.doi.org/10.3390/cells10102564
work_keys_str_mv AT wattskelsey effectsofsexand17bestradioloncardiacfibroblastmorphologyandsignalingactivitiesinvitro
AT richardsonwilliamj effectsofsexand17bestradioloncardiacfibroblastmorphologyandsignalingactivitiesinvitro