Cargando…

DARPin_9-29-Targeted Gold Nanorods Selectively Suppress HER2-Positive Tumor Growth in Mice

SIMPLE SUMMARY: Breast cancer is one of the main causes of cancer-related death in women all around the world. The disease becomes largely incurable and lethal after metastasis to distant organs. High level of HER2, a tyrosine kinase receptor, is associated with more aggressive clinical behavior and...

Descripción completa

Detalles Bibliográficos
Autores principales: Proshkina, Galina M., Shramova, Elena I., Shilova, Marya V., Zelepukin, Ivan V., Shipunova, Victoria O., Ryabova, Anastasia V., Deyev, Sergey M., Kotlyar, Alexander B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534065/
https://www.ncbi.nlm.nih.gov/pubmed/34680384
http://dx.doi.org/10.3390/cancers13205235
Descripción
Sumario:SIMPLE SUMMARY: Breast cancer is one of the main causes of cancer-related death in women all around the world. The disease becomes largely incurable and lethal after metastasis to distant organs. High level of HER2, a tyrosine kinase receptor, is associated with more aggressive clinical behavior and poor prognosis for breast cancer patients. In this paper, we developed a novel nano-biomaterial for selective photothermal therapy of HER2-positive breast cancers. We demonstrate that bovine serum albumin (BSA)-coated mini gold nanorods (GNRs) chemically conjugated with a HER2-specific designed ankyrin repeat protein, DARPin_9-29, selectively accumulate in HER2-positive xenograft tumors in mice and lead to a strong reduction in the tumor size when being illuminated with near-infrared light. ABSTRACT: Near-infrared phototherapy has great therapeutic potential for cancer treatment. However, for efficient application, in vivo photothermal agents should demonstrate excellent stability in blood and targeted delivery to pathological tissue. Here, we demonstrated that stable bovine serum albumin-coated gold mini nanorods conjugated to a HER2-specific designed ankyrin repeat protein, DARPin_9-29, selectively accumulate in HER2-positive xenograft tumors in mice and lead to a strong reduction in the tumor size when being illuminated with near-infrared light. The results pave the way for the development of novel DARPin-based targeted photothermal therapy of cancer.