Cargando…
Novel Molecular Mechanism of Lenalidomide in Myeloid Malignancies Independent of Deletion of Chromosome 5q
SIMPLE SUMMARY: Lenalidomide is an immunomodulatory drug (IMiD) that has achieved clinical efficacies in multiple myeloma (MM) and myelodysplastic syndromes (MDS) with a single deletion of chromosome 5q (del(5q)). However, many patients treated with lenalidomide relapse and become resistant. Recent...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534127/ https://www.ncbi.nlm.nih.gov/pubmed/34680233 http://dx.doi.org/10.3390/cancers13205084 |
Sumario: | SIMPLE SUMMARY: Lenalidomide is an immunomodulatory drug (IMiD) that has achieved clinical efficacies in multiple myeloma (MM) and myelodysplastic syndromes (MDS) with a single deletion of chromosome 5q (del(5q)). However, many patients treated with lenalidomide relapse and become resistant. Recent studies have demonstrated that lenalidomide binds a protein called cereblon (CRBN), leading to reduced protein levels of IKZF1 and IKZF3 and casein kinase 1 alpha. We have identified signaling molecules downstream of IKZF1, G protein-coupled receptor 68 (GPR68) and regulator of calcineurin 1 (RCAN1) in myeloid malignancies, including MDS and acute myeloid leukemia (AML) with or without del(5q). This review summarizes how lenalidomide exerts anti-tumor activity and highlights novel therapeutic targets that could enhance the anti-tumor activity of lenalidomide with a focus on myeloid malignancies, especially without del(5q). ABSTRACT: Lenalidomide as well as other immunomodulatory drugs (IMiDs) have achieved clinical efficacies in certain sub-types of hematologic malignancies, such as multiple myeloma, lower-risk myelodysplastic syndromes (MDS) with a single deletion of chromosome 5q (del(5q)) and others. Despite superior clinical response to lenalidomide in hematologic malignancies, relapse and resistance remains a problem in IMiD-based therapy. The last ten years have witnessed the discovery of novel molecular mechanism of IMiD-based anti-tumor therapy. IMiDs bind human cereblon (CRBN), the substrate receptor of the CRL4 E3 ubiquitin ligase complex. Binding of CRBN with IMiDs leads to degradation of the Ikaros family zinc finger proteins 1 and 3 (IKZF1 and IKZF3) and casein kinase 1 alpha. We have found that lenalidomide-mediated degradation of IKZF1 leads to activation of the G protein-coupled receptor 68 (GPR68)/calcium/calpain pro-apoptotic pathway and inhibition of the regulator of calcineurin 1 (RCAN1)/calcineurin pro-survival pathway in MDS and acute myeloid leukemia (AML). Calcineurin inhibitor Cyclosporin-A potentiates the anti-leukemia activity of lenalidomide in MDS/AML with or without del(5q). These findings broaden the therapeutic potential of IMiDs. This review summarizes novel molecular mechanism of lenalidomide in myeloid malignancies, especially without del(5q), in the hope to highlight novel therapeutic targets. |
---|