Cargando…
Entropy-Based Graph Clustering of PPI Networks for Predicting Overlapping Functional Modules of Proteins
Functional modules can be predicted using genome-wide protein–protein interactions (PPIs) from a systematic perspective. Various graph clustering algorithms have been applied to PPI networks for this task. In particular, the detection of overlapping clusters is necessary because a protein is involve...
Autores principales: | Jeong, Hoyeon, Kim, Yoonbee, Jung, Yi-Sue, Kang, Dae Ryong, Cho, Young-Rae |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534328/ https://www.ncbi.nlm.nih.gov/pubmed/34681995 http://dx.doi.org/10.3390/e23101271 |
Ejemplares similares
-
LePrimAlign: local entropy-based alignment of PPI networks to predict conserved modules
por: Maskey, Sawal, et al.
Publicado: (2019) -
Predicting Drug–Gene–Disease Associations by Tensor Decomposition for Network-Based Computational Drug Repositioning
por: Kim, Yoonbee, et al.
Publicado: (2023) -
Detecting overlapping protein complexes in PPI networks based on robustness
por: Wang, Shuliang, et al.
Publicado: (2013) -
Drug-Disease Association Prediction Using Heterogeneous Networks for Computational Drug Repositioning
por: Kim, Yoonbee, et al.
Publicado: (2022) -
Discovering overlapped protein complexes from weighted PPI networks by removing inter-module hubs
por: Maddi, A. M. A., et al.
Publicado: (2017)