Cargando…

Meta-Strategy for Learning Tuning Parameters with Guarantees

Online learning methods, similar to the online gradient algorithm (OGA) and exponentially weighted aggregation (EWA), often depend on tuning parameters that are difficult to set in practice. We consider an online meta-learning scenario, and we propose a meta-strategy to learn these parameters from p...

Descripción completa

Detalles Bibliográficos
Autores principales: Meunier, Dimitri, Alquier, Pierre
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534330/
https://www.ncbi.nlm.nih.gov/pubmed/34681980
http://dx.doi.org/10.3390/e23101257
Descripción
Sumario:Online learning methods, similar to the online gradient algorithm (OGA) and exponentially weighted aggregation (EWA), often depend on tuning parameters that are difficult to set in practice. We consider an online meta-learning scenario, and we propose a meta-strategy to learn these parameters from past tasks. Our strategy is based on the minimization of a regret bound. It allows us to learn the initialization and the step size in OGA with guarantees. It also allows us to learn the prior or the learning rate in EWA. We provide a regret analysis of the strategy. It allows to identify settings where meta-learning indeed improves on learning each task in isolation.