Cargando…
A General Rate-Distortion Optimization Method for Block Compressed Sensing of Images
Block compressed sensing (BCS) is a promising technology for image sampling and compression for resource-constrained applications, but it needs to balance the sampling rate and quantization bit-depth for a bit-rate constraint. In this paper, we summarize the commonly used CS quantization frameworks...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534351/ https://www.ncbi.nlm.nih.gov/pubmed/34682078 http://dx.doi.org/10.3390/e23101354 |
Sumario: | Block compressed sensing (BCS) is a promising technology for image sampling and compression for resource-constrained applications, but it needs to balance the sampling rate and quantization bit-depth for a bit-rate constraint. In this paper, we summarize the commonly used CS quantization frameworks into a unified framework, and a new bit-rate model and a model of the optimal bit-depth are proposed for the unified CS framework. The proposed bit-rate model reveals the relationship between the bit-rate, sampling rate, and bit-depth based on the information entropy of generalized Gaussian distribution. The optimal bit-depth model can predict the optimal bit-depth of CS measurements at a given bit-rate. Then, we propose a general algorithm for choosing sampling rate and bit-depth based on the proposed models. Experimental results show that the proposed algorithm achieves near-optimal rate-distortion performance for the uniform quantization framework and predictive quantization framework in BCS. |
---|