Cargando…
A General Rate-Distortion Optimization Method for Block Compressed Sensing of Images
Block compressed sensing (BCS) is a promising technology for image sampling and compression for resource-constrained applications, but it needs to balance the sampling rate and quantization bit-depth for a bit-rate constraint. In this paper, we summarize the commonly used CS quantization frameworks...
Autores principales: | Chen, Qunlin, Chen, Derong, Gong, Jiulu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534351/ https://www.ncbi.nlm.nih.gov/pubmed/34682078 http://dx.doi.org/10.3390/e23101354 |
Ejemplares similares
-
Low-Complexity Rate-Distortion Optimization of Sampling Rate and Bit-Depth for Compressed Sensing of Images
por: Chen, Qunlin, et al.
Publicado: (2020) -
Low-Complexity Adaptive Sampling of Block Compressed Sensing Based on Distortion Minimization
por: Chen, Qunlin, et al.
Publicado: (2022) -
An Adaptive Rate Blocked Compressive Sensing Method for Video
por: Wang, Jianming, et al.
Publicado: (2021) -
Determining optimal medical image compression: psychometric and image distortion analysis
por: Flint, Alexander C
Publicado: (2012) -
A Rate-Distortion-Based Merging Algorithm for Compressed Image Segmentation
por: Juang, Ying-Shen, et al.
Publicado: (2012)