Cargando…

Enhanced Parameter Estimation with Periodically Driven Quantum Probe

I propose a quantum metrology protocol for measuring frequencies and weak forces based on a periodic modulating quantum Jahn–Teller system composed of a single spin and two bosonic modes. I show that, in the first order of the frequency drive, the time-independent effective Hamiltonian describes spi...

Descripción completa

Detalles Bibliográficos
Autor principal: Ivanov, Peter A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534368/
https://www.ncbi.nlm.nih.gov/pubmed/34682057
http://dx.doi.org/10.3390/e23101333
Descripción
Sumario:I propose a quantum metrology protocol for measuring frequencies and weak forces based on a periodic modulating quantum Jahn–Teller system composed of a single spin and two bosonic modes. I show that, in the first order of the frequency drive, the time-independent effective Hamiltonian describes spin-dependent interaction between the two bosonic modes. In the limit of high-frequency drive and low bosonic frequency, the quantum Jahn–Teller system exhibits critical behavior which can be used for high-precision quantum estimation. A major advantage of the scheme is the robustness of the system against spin decoherence, which allows it to perform parameter estimation with measurement time not limited by spin dephasing.