Cargando…
Modulation of Inherent Niches in 3D Multicellular MSC Spheroids Reconfigures Metabolism and Enhances Therapeutic Potential
Multicellular spheroids show three-dimensional (3D) organization with extensive cell–cell and cell–extracellular matrix interactions. Owing to their native tissue-mimicking characteristics, mesenchymal stem cell (MSC) spheroids are considered promising as implantable therapeutics for stem cell thera...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534378/ https://www.ncbi.nlm.nih.gov/pubmed/34685727 http://dx.doi.org/10.3390/cells10102747 |
_version_ | 1784587538409717760 |
---|---|
author | Chen, Li-Chi Wang, Hsin-Wen Huang, Chieh-Cheng |
author_facet | Chen, Li-Chi Wang, Hsin-Wen Huang, Chieh-Cheng |
author_sort | Chen, Li-Chi |
collection | PubMed |
description | Multicellular spheroids show three-dimensional (3D) organization with extensive cell–cell and cell–extracellular matrix interactions. Owing to their native tissue-mimicking characteristics, mesenchymal stem cell (MSC) spheroids are considered promising as implantable therapeutics for stem cell therapy. Herein, we aim to further enhance their therapeutic potential by tuning the cultivation parameters and thus the inherent niche of 3D MSC spheroids. Significantly increased expression of multiple pro-regenerative paracrine signaling molecules and immunomodulatory factors by MSCs was observed after optimizing the conditions for spheroid culture. Moreover, these alterations in cellular behaviors may be associated with not only the hypoxic niche developed in the spheroid core but also with the metabolic reconfiguration of MSCs. The present study provides efficient methods for manipulating the therapeutic capacity of 3D MSC spheroids, thus laying solid foundations for future development and clinical application of spheroid-based MSC therapy for regenerative medicine. |
format | Online Article Text |
id | pubmed-8534378 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85343782021-10-23 Modulation of Inherent Niches in 3D Multicellular MSC Spheroids Reconfigures Metabolism and Enhances Therapeutic Potential Chen, Li-Chi Wang, Hsin-Wen Huang, Chieh-Cheng Cells Article Multicellular spheroids show three-dimensional (3D) organization with extensive cell–cell and cell–extracellular matrix interactions. Owing to their native tissue-mimicking characteristics, mesenchymal stem cell (MSC) spheroids are considered promising as implantable therapeutics for stem cell therapy. Herein, we aim to further enhance their therapeutic potential by tuning the cultivation parameters and thus the inherent niche of 3D MSC spheroids. Significantly increased expression of multiple pro-regenerative paracrine signaling molecules and immunomodulatory factors by MSCs was observed after optimizing the conditions for spheroid culture. Moreover, these alterations in cellular behaviors may be associated with not only the hypoxic niche developed in the spheroid core but also with the metabolic reconfiguration of MSCs. The present study provides efficient methods for manipulating the therapeutic capacity of 3D MSC spheroids, thus laying solid foundations for future development and clinical application of spheroid-based MSC therapy for regenerative medicine. MDPI 2021-10-14 /pmc/articles/PMC8534378/ /pubmed/34685727 http://dx.doi.org/10.3390/cells10102747 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chen, Li-Chi Wang, Hsin-Wen Huang, Chieh-Cheng Modulation of Inherent Niches in 3D Multicellular MSC Spheroids Reconfigures Metabolism and Enhances Therapeutic Potential |
title | Modulation of Inherent Niches in 3D Multicellular MSC Spheroids Reconfigures Metabolism and Enhances Therapeutic Potential |
title_full | Modulation of Inherent Niches in 3D Multicellular MSC Spheroids Reconfigures Metabolism and Enhances Therapeutic Potential |
title_fullStr | Modulation of Inherent Niches in 3D Multicellular MSC Spheroids Reconfigures Metabolism and Enhances Therapeutic Potential |
title_full_unstemmed | Modulation of Inherent Niches in 3D Multicellular MSC Spheroids Reconfigures Metabolism and Enhances Therapeutic Potential |
title_short | Modulation of Inherent Niches in 3D Multicellular MSC Spheroids Reconfigures Metabolism and Enhances Therapeutic Potential |
title_sort | modulation of inherent niches in 3d multicellular msc spheroids reconfigures metabolism and enhances therapeutic potential |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534378/ https://www.ncbi.nlm.nih.gov/pubmed/34685727 http://dx.doi.org/10.3390/cells10102747 |
work_keys_str_mv | AT chenlichi modulationofinherentnichesin3dmulticellularmscspheroidsreconfiguresmetabolismandenhancestherapeuticpotential AT wanghsinwen modulationofinherentnichesin3dmulticellularmscspheroidsreconfiguresmetabolismandenhancestherapeuticpotential AT huangchiehcheng modulationofinherentnichesin3dmulticellularmscspheroidsreconfiguresmetabolismandenhancestherapeuticpotential |